FHWA/RD-86/191

EFFECTS OF CEANGES IN BFFECTIVE RAIL BEIGET ON BARRIER PERPORMANCE

Volume 1: Research Report

April 1987
Pinal Report

This document is syailable to the public through the Mational Techoical Infornation Service, Springfield, Virginia 21161.

Prepared for Safety Design Divisior FRDERAL HIGEHAY ADMIHISTBATIO U.S. Department of Tranaportation Washington, D.C. 20590

1. Redort No. ${ }^{\text {a }}$ (2. Government Accession No.	E. Recipiont's Cataiog N
FHWA/RD-86/191	1088.184 262
4. Titie and Suptitie EEFECTS OF CHANGES IN EFFECTIVE RAIL HEIGHT ON BARRIER PERFORMANCE Volume 1, Research Report	5. Report Date
	April 1987
	6. Pertorming Organization Code
7. Autnor(s) Bronstad, M. E., Calcote, L. R., Hancock, K. L., and Mayer, J. B., Jr.	8. Pertorming Organization Redort No. $06-7822-1$
9. Performing Organization Name and Address Southwest Research Insititute 6220 Culebra Road San Antonio, TX 78284	10. Work Unit No.
	11. Contract of Grant No. DTFE61-83-C-00100
	13. Tyoe of Report and Period Coverec
12. Sponsoring Agency Name and Acarest Safety Design Division Federal Eighway Administration U.S. Department of Transportation Washington, DC 20590	Final Report Oct. 1983 - Aug. 1986
	14. Sponsoring Agency Coce

15. Supplementary Notes

FHWA Contracting Officer Technical Representative: Martin Eargrave (HSR-20)

16. Abstract

The objective of this project was to determine the critical rail mounting heights to prevent underride and override for traffic barriers. W-beam guardrails, which are the most commonly specified barrier in the U.S., were used to develop criteria for both this element and the thrie beam.

The scope of the project included both computer simulation and full-scale crash tests. The test barriers were installed on level and sloping terrains. Most of the testing was accomplished using $4500-\mathrm{lb}(2000-\mathrm{kg})$ and $1800-\mathrm{lb}(800-\mathrm{kg})$ venicles. One test was conducted using a low fzont profile car impacting a cable guardrail system.

This volume is the first in a series. The others in the series are:

Vol. No.	FHWA No.	
1		
2		

17. Key words

guardrail, barrier height, sloping terrain, crash test
18. Distribution Statemant

No restrictions. This document is available to the public through the National Technical Information Service, Springfield VA 22161.

19. Security Clashif, (of this report)	20. Security Classif. (of this pago)	21. No. of Pages	22. Price
Unclassified	Unclassified	155	98

[^0]METRIC (SI*) CONVERSION FACTORS

[^1]
TABLE OF CONTENTS

Volume 1: Researcin Report

Section Page
I. INTRODUCTION AND RESEARCH APPROACH 1
A. Statement of the Problem 1
B. Objectives and Scope 1
II. REVIEW OF LITERATURE 4
A. Available Literature 4
B. Vehicle Survey 16
III. ANALYTICAL STUDY 25
A. Selection of Simulation Program. 25
B. HVOSM Modifications 26
C. HVOSM Validation Efforts 27
D. HVOSM Sensitivity Analyses 34
E. Final Checks on and Disposition of HVOSM 46
IV. SUMMARY OF FULL-SCALE CRASH TESTS 56
A. General 56
B. Critical Mounting Height Tests, Series 56
C. Sloping Terrain Tests 75
D. Critical Mounting Height Tests, Series 2 86
V. CONCLUSIONS AND DESIGN GUIDELINES 102
A. Findings 102
B. Design Guidelines 107
REFERENCES 139

TABLE OF CONTENTS (Continued)

Volume 2: Appendices

Appendix Page
A. FULL-SCALE CRASH TEST REPORTS 1
Test BH-1 7
Test BH-2 16
Test BH-3. 30
Test BH-4 42
Test BH-5 54
Test BH-6 76
Test BH-7 91
Test BH-8 106
Test BH-9 126
Test BH-10 148
Test BH-11 165
Test BH-12 187
Test BH-13 209
Test BH-14 218
Test BH-15 239
Test BH-16 261
B. HVOSM PROGRAM MODIFICATIONS 277

LIST OF FIGURES

Volume 1: Research Report

Figure Page

1. Study areas 2
2. Sample plot of bumper height positions 17
3. Categories of bumper types 18
4. Design vehicle underride height 21
5. Design vehicle override height 22
6. Aerodynamically styled car geometries 24
7. TTI Test 3659-1 28
8. TTI Test 3659-3 29
9. Bumper height for high damping characteristics and low piston velocity 35
10. Front and rear damping curves for 1978 Honda Civic 36
11. Bumper height sensitivity to damping coefficient 37
12. Suspension load deflection variables 38
13. Bumper height sensitivity to suspension load deflection rate 39
14. Bumper height for Honda Civic and VW Rabbit suspension load deflection rates 40
15. Steering/braking effects on 4:1 embankment slope 42
16. Lateral and longitudinal displacements 43
17. Steering/braking effects on 10:1 embankment slope 44
18. Steering/braking effects with coefficient of friction $=0.50$ 45
19. HVOSM simulation geometry 47
20. Before and after test photographs, Test. BH-1 61
21. Sequential photographs, Test BH-1 62
22. Before and after photographs, Test BH-2 63
23. Sequential photographs, Test BH-2 64
24. Before and after photographs, Test BH-3 66
25. Sequential photographs, Test BH-3 67
26. Before and after photographs, Test BH-4 69
27. Sequential photographs, Test BH-4 70
28. Before and after photographs, Test BH-5 71

LIST OF EIGURES (Continued)

Figure Page
29. Sequential photographs, Test 3H-5 72
30. Before and after test photographs, Test BH-6 73
31. Sequential photographs, Test BH-6 74
32. Barrier construction details, Test BH-7. 76
33. Barrier installation on sloped terrain 77
34. Sequential photographs, Test BH-7. 79
35. Before and after test photographs, Test BH-7. 80
36. Sequential photographs, Test BH-8. 81
37. Before and after test photographs, Test BH-8 82
38. Sequential photographs, Test BH-9 83
39. Before and after test photographs, Test BH-9 84
40. Sequential photographs, Tesะ BH-10 85
41. After test photographs, Test BH-10. 87
42. Before and after test photographs, Test BH-11 88
43. Sequential photographs, Test BH-11 89
44. Before and after test photographs, Test BH-12 90
45. Sequential photographs, Test BH-12 91
46. Before and after test photographs, Test BH-13 93
47. Sequential photographs, Test BH-13 94
48. Before and after test photographs, Test BH-14 95
49. Sequential photographs, Test BH-14 96
50. Before and after test photographs, Test BH-15 97
51. Sequential photographs, Test BH-15. 99
52. Before and after test photographs, Test BH-16 100
53. Sequential photographs, Test BH-16. 101
54. Barrier height considerations. 106
55. Example of underride/override plots for mini and standard vehicles at $7.5^{\circ}, 15^{\circ}$, and 25° to determine barrier height limit envelope 110
56. Barrier height limit envelope ($G 4$ and $G 9$ system, $a_{t}=-10$, $\left.a_{s}=20, a_{e}=4\right)$ 112
57. Barrier height limit envelope (G4(1S) system, AT $=48$, $A S=20, A E=4$) 113
Figure Page
58. Barrier limits (G4(1S) system, $A T=48, A S=20, A E=6$) 114
59. Barrier limits (G4(1S) system, $A T=48, A S=20, A E=8$) 115
60. Barrier limits (G4(15) system, $A T=48, A S=20, A E=10$) 116
61. Barrier limits (G4(1S) system, $A T=48$, $A S=20, A E=-8$) 117
62. Barrier limits (G4(1S) system, $A T=48, A S=20, A E=-4$) 118
63. Barrier limits (G4(1S) system, $A T=48$, $A S=20, A E=4$) 119
64. Barrier limits (G4(1S) system, $A T=-20, A S=20, A E=6$) 120
65. Barrier limits (G4(1S) system, $A T=-20, A S=20, A E=8$) 121
66. Barrier limits (G4(1S) system, AT $=-20, A S=20, A E=10$) 122
67. Barrier limits (G4(1S) system, $A T=-20, A S=20, A E=-8$) 123
68. Barrier limits (G4(1S) system, $A T=-20, A S=20, A E=-4$) 124
69. Barrier limits (G4(1S) system, $A T=-20, A S=-20, A E=4$) 125
70. Barrier limits (G4(1S) system, $A T=-20$, $A S=-20, A E=6$) 126
71. Barrier limits (G4(1S) system, $A T=-20$, $A S=-20, A E=8$). 127
72. Barrier limits (G4(1S) system, $A T=-20$, $A S=-20, A E=10$). 128
73. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=4$) 129
74. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=6$) 130
75. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=8$) 131
76. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=10$) 132
77. Barrier limits (G4(1S) system, $A T=-10$, $A S=20, A E=-8$) 133
78. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=-4$) 134
79. Barrier limits (G4(1S) system, $A T=-10, A S=-10, A E=4$) 135
80. Barrier limits (G4(15) system, $A T=-10, A S=-10, A E=6$) 136
81. Barrier limits (G4(1S) system, $A T=-10, A S=-10, A E=8$). 137
82 Barrier limits (G4(1S) system, $A T=-10, A S=-10, A E=10) . .138$
Volume 2: Appendices
Figure
Page

1. Test vehicle dimensions 2
2. Data acquisition system 4

LIST OF FIGURES (Continued)

Eigure Page
3. Barrier and vehicle details, Test BH-1 9
4. Summary of results, Test BH-1 10
5. Barrier and vehicle damage, Test BH-1 12
6. Barrier and vehicle details, Test $\mathrm{BH}-2$ 18
7. Summary of results, Test $\mathrm{BH}-2$ 19
8. Barrier and vehicle damage, Test BH-2 21
9. Vehicle accelerations, Test BH-2 28
10. Barrier and vehicle details, Test BH-3 32
11. Sumary of results, Test BH-3 33
12. Barrier and vehicle damage, Test BH-3 35
13. Vehicle accelerations, Test BH-3 40
14. Barrier and vehicle details, Test BH-4 44
15. Surmary of results, Test BH-4 45
16. Barrier and vehicle damage, Test BH-4 47
17. Vehicle accelerations, Test BH-4 53
18. Barrier and vehicle details, Test BH-5 56
19. Summary of results, Test BH-5 57
20. Barrier and vehicle damage, Test BH-5 59
21. Vehicle accelerations, Test BH-5 69
22. Driver head accelerations, Test BH-5 70
23. Driver chest accelerations, Test BH-5 71
24. Driver femur loads, Test BH-5 72
25. Passenger head accelerations, Test BH-5 73
26. Passenger chest accelerations, Test BH-5 74
27. Passenger femur loads, Test BH-5 75
28. Barrier and vehicle details, Test BH-6 78
29. Barrier and vehicle damage, Test BH-6. 79
30. Summary of results, Test BH-6 80
31. Vehicle accelerations, Test BH-6 87
32. Driver head accelerations, Test BH-6 88
33. Driver chest accelerations, Test BH-6 89
34. Driver femur loads, Test BH-6 90
Figure Page
35. Barrier and vehicle details, Test BH-7 92
36. Summary of results, Test $\mathrm{BH}-7$. 93
37. Barrier and vehicle damage, Test BH-7 101
38. Vehicle accelerations, Test BH-7 102
39. Driver head accelerations, Test BH-7 103
40. Driver chest accelerations, Test BH-7 104
41. Driver femur loads, Test BH-7 105
42. Barrier and vehicle details, Test BH-8 107
43. Summary of results, Test $\mathrm{BH}-8$ 108
44. Barrier and vehicle damage, Test BH-8 119
45. Vehicle accelerations, Test BH-8 120
46. Driver head accelerations, Test BH-8 121
47. Driver chest accelerations, Test BH-8 122
48. Passenger head accelerations, Test BH-8 123
49. Passenger chest accelerations, Test BH-8. 124
50. Passenger femur loads, Test BH-8 125
51. Barrier and vehicle details, Test BH-9. 128
52. Summary of results, Test BH-9 129
53. Barrier and vehicle damage, Test BH-9 140
54. Vehicle accelerations, Test BH-9 141
55. Driver head accelerations, Test BH-9 142
56. Driver chest accelerations, Test BH-9 143
57. Driver femur loads, Test BH-9 144
58. Passenger head accelerations, Test BH-9. 145
59. Passenger chest accelerations, Test BH-9. 146
60. Passenger femur loads, Test BH-9 147
61. Barrier and vehicle details, Test BH-10 150
62. Sunmary of results, Test $\mathrm{BH}-10$ 151
63. Barrier and vehicle damage, Test $\mathrm{BH}-10$ 160
64. Vehicle accelerations, Test BH-10 161
65. Driver head accelerations, Test BH-10 162

LIST OF FIGURES (Continued)

Figure Page
66. Driver chest accelerations, Test $\mathrm{BH}-10$ 163
67. Driver femur loads, Test $\mathrm{BH}-10$ 164
68. Barrier and vehicle details, Test BH-11 167
69. Summary of results, Test BH-11 168
70. Barrier and vehicle damage, Test BH-11 179
71. Vehicle accelerations, Test BH-11 180
72. Driver head accelerations, Test BH-11 181
73. Driver chest accelerations, Test BH-11 182
74. Driver femur loads, Test BH-11 183
75. Passenger head accelerations, Test BH-11 184
70. Passenger chest accelerations, Test BH-11 185
77. Passenger femur loads, Test BH-11 186
78. Barrier and vehicle details, Test BH-12 189
79. Summary of results, Test BH-12 190
80. Barrier and vehicle damage, Test BH-12 201
81. Vehicle accelerations, Test BH-12 202
82. Driver head accelerations, Test BH-12 203
83. Driver chest accelerations, Test BH-12 204
84. Driver femur loads, Test BH-12 205
85. Passenger head accelerations, Test $\mathrm{BH}-12$ 206
86. Passenger chest accelerations, Test BH-12 207
87. Passenger femur loads, Test BH-12. 208
88. Barrier and vehicle details, Test BH-13 211
89. Summary of results, Test BH-13 212
90. Barrier and vehicle damage, Test BH-13. 217
91. Barrier and vehicle details, Test BH-14 219
92. Sumnary of results, Test BH-14 220
93. Barrier and vehicle damage, Test $\mathrm{BH}-14$ 231
94. Vehicle accelerations, Test BH-14 232
95. Driver head accelerations, Test BH-14 233
96. Driver chest accelerations, Test BH-14 234
97. Driver femur loads, Test 3H-14 235

LIST OF FIGURES (Continued)

Figure Page
98. Barrier and vehicle details, Test BH-14 236
99. Passenger chest accelerations, Test BH-14 237
100. Passenger femur loads, Test BH-14 238
101. Barrier and vehicle details, Test BH-15 241
102. Summary of results, Test $\mathrm{BH}-15$ 242
103. Barrier and vehicle damage, Test BH-15 253
104. Vehicle accelerations, Test BH-15 254
105. Passenger head accelerations, Test BH-15 255
106. Passenger chest accelerations, Test BH-15 256
107. Passenger femur loads, Test BH-15 257
108. Driver head accelerations, Test BH-15 258
109. Driver chest accelerations, Test BH-15 259
110: Driver femur loads, Test BH-15 260
111. Barrier and vehicle details, Test $\mathrm{BH}-16$ 263
112. Sequential photographs, Test BH-16 264
113. Summary of results, Test BH-16 265
114. Barrier and vehicle damage, Test BH-16 274
115. Vehicle accelerations, Test $\mathrm{BH}-16$ 275
LIST OF TABLES
Volume 1: Research Report
Table Page

1. Synopses of directly related reports 5
2. Roadway/roadside geometric parameters 15
3. Vehicle survey data 19
4. HVOSM simulation summary 30
5. Validation test/HVOSM simulation comparisons 32
6. Summary of HVOSM simulations - sloping terrain. 48
7. Critical underride/override barrier mounting heights as determined by simulation results 49
Table Page
8. Comparison of HVOSM predictions Test BH-7 results 51
9. Comparison of HVOSM predictions Test BH-7 results for steer angle input 52
10. Computer simulation/Test BH-8 comparison 53
11. Comparison of test and simulation for Tests $\mathrm{BH}-9$ and $\mathrm{BH}-10$ 55
12. Sumary of critical barrier height tests, series 1 57
13. Summary of sloping terrain tests 58
14. Summary of critical barrier height tests, series 2 59
15. Threshold railing heights 104
16. Adjustments of TTI data for underride/override 108
17. Roadway/roadside geometric parameters 111
Volume 2: Appendices
Table Page
18. Permanent barrier deflections, Test BH-1 13
19. Film analysis data, Test BH-1 14
20. Permanent barrier deflections, Test BH-2 22
21. Film analysis data, Test BH-2. 23
22. Transducer data, Test BH-2 25
23. Film analysis data, Test BH-3 36
24. Transducer data, Test BH-3 38
25. Permanent rail deflections, Test BH-4 48
26. Film analysis data, Test BH-4 49
27. Transducer data, Test BH-4 51
28. Permanent barrier deflections, Test BH-5 60
29. Film analysis data, Test BH-5 61
30. Transducer data, Test BH-5 63
31. Vehicle transducer data, Test BH-6 82
32. Dummy data, Test BH-6 84
33. Permanent barrier deflections, Test BH-6 86
34. Permanent barrier deflections, Test BH-7 94
Table Page
35. Film analysis data, Test $\mathrm{BH}-7$ 95
36. Transducer data, Test BH-7 97
37. Permanent barrier deflections, Test BH-8 110
38. Film analysis data, Test BH-8 111
39. Transducer data, Test BH-8 113
40. Permanent barrier deflections, Test BH-9 131
41. Film analysis data, Test BH-9 132
42. Transducer data, Test BH-9 134
43. Permanent barrier deflections, Test BH-10 153
44. Film analysis data, Test BH-10 154
45. Transducer data, Test BH-10 156
46. Fermanent barrier deflections, Test BH-11 170
47. Film analysis data, Test BH-11 171
48. Transducer data, Test $\mathrm{BH}-11$ 173
49. Permanent barrier deflections; Test BH-12 192
50. Film analysis data, Test BH-12 193
51. Transducer data, Test BH-12 195
52. Permanent barrier deflections, Test BH-13 214
53. Film analysis data, Test BH-13 215
54. Permanent barrier deflections, Test BH-14 222
55. Film analysis data, Test BH-14 223
56. Transducer data, Test BH-14 225
57. Permanent barrier deflections, Test BH-15 244
58. Film analysis data, Test BH-15 245
59. Transducer data, Test BH-15 247
60. Film analysis data, Test BH-16 266
61. Transducer data, Test BH-16 270

I. INTRODUCTION AND RESEARCH APPROACH

A. Statement of the Problem

Abstract

Prior to the initiation of this and similar other projects, roadside barriers had been tested on flat and level terrain in order to permit relative assessments of their safety. On subsequent real world installtions, the barriers were sometimes installed on slopes or at railing heights differing from the system designs. Over a period of time, the barrier heights were further changed by site variations caused by resurfacing, settlement, erosion, soil and grass buildup adjacent to the barriers, etc. Thus, a need existed to determine the degree to which barrier performance was degraded by these railing height variations.

The performance of guardrails had been shown in numerous full-scale tests to be sensitive to minor changes in installation details. The performance both on level terrain and on side slopes might be improved by making such design changes as (a) removing the washers from the button head bolts and (b) increasing the size or changing the geometry of the blockouts. Several States had developed adjustable blockouts for raising or lowering W-beam rails. Evaluations were needed to verify the strength and performance of such changes.

The three problem areas of interest in this study are illustrated in figure 1 . View (a) shows a guardrail that is on flat and level terrain but is at a height that is either lower or higher than the design standard. View (b) shows a system on a slope. Finally, view (c) illustrates systems with coupled rails, uncoupled rails with standard blockout, and uncoupled rails with variable blockouts.

B. Objectives and Scope

As delineated in the Statement of Work, the objectives of this study were (1) to determine the degree to which barrier performance is degraded

(a) Guardrails -ith NonScandard Height

(b) Guardrails on Slopes

(c) Systems with Various Couplings

VEHICLE PROBLPM AREAS (ALI CASES):

1. Wheel Saagging
2. Vauiting
3. Rollover

Figure 1. Study areas.
by rail mounting height variations such as initial height differing from design standards, resurfacing, instaliations on slopes, soil and turf buildup, and (2) to improve the performance of guardrails on level terrain and on side slopes.

The stated scope of work was as follows:

This requirement shail consist of using computer simulation and other analytical tools in combination with full-scale tests with passenger cars, vans, and pickup trucks to assess the performance of various traffic barriers on irregular roadsides and on slopes. Static tests and pendulum tests will be conducted on barrier components. Computer simulation and other analytical methods will be used to assess modified barrier designs before detailed drawings are prepared and the barriers are evaluated through full-scale tests.

The emphasis in this project was on W-beam guardrail systems which are the most commonly specified systems in the country. Findings from the Wbeam investigations regarding barrier underride/override are also considered to be appropriate for thrie beam systems due to the geometrical similarity between the two beam elements.

II. REVIEW OF LITERATURE

A. Available Literature

A manual review of on-hand documentation and computer on-line searches of available literature were made eariy in this study. For the most part, these searches indicated a general lack of information concerning the performance of barriers with varying railing heights. However, three reports were found that were concerned with barrier railing height. These were from the States of Virginia ${ }^{(1)}$ and New York ${ }^{(2)}$ and from an FHWA study at Texas Transportation Institute (TTI) ${ }^{(3)}$. The reports were reviewed, and brief synopses and assessments are contained in table 1. More complete assessments of these and other related documentation are included in appendix B; an interim report was submitted on completion of task A.

The Virginia report did not contain definitive information about the relationship between railing height and barrier performance. However, both the New York and TTI reports did contain information that would be of value in selecting barrier systems and establishing trial railing height guidelines. The consensus was that the override/underride vehicle heights established in the New York study might be better than the bumper midheights of the TTI study. However, this was not conclusive and would be a subsequent determination of this study.

The TTI report was of particular interest in this study. In establishing the barrier placement guidelines shown in table 1, the TTI investigators had conducted 156 computer simulations using the HVOSM code ${ }^{(5)}$ to estimate bumper mid-heights for various combinations of roadside geometries, vehicle types, and encroachment angles. Included were the 26 roadway/roadside geometric parameters shown in table 2, two vehicle types [4500-1b ($2000-\mathrm{kg}$) and $1800-1 \mathrm{~b}(800-\mathrm{kg})$], and three encroachment angles ($7.5^{\circ}, 15^{\circ}$, and 25°). If critical override/underride heights could be determined and the mid-height curves adjusted accordingly, the range of barrier heights could be established therefrom. Thus, the HVOSM data were

Table i. Synopses of directly related reports.

STNOPSIS - VIRGINIA STUDY

Reference:

B. T. Hargroves and J. S. Tyler, "Identificarion, Analysis, and Remedial Treatment of Low Guardrail in Virginia," Virginia Highway and Transportation Research Council Report No. VHTRC 82-R15, September 1981.

Abstract:

Guardrails that are too Low may fail to safely redirect errant vehicles; instead, the vehicles may vault the guardrails, resulting in severe accidents. An analysis of data on a small sample of guardrails throughout Virginia showed that over 80 percent of the guardrails were lower than the current standard height of 27 in.

The causes of low guardrail were idencified as installation of old standards that were lower than current standards, faulty installation, and inadequate maintenance. Methods for locating low guardrails were identified and six remedial treatments were developed ranging from removal of the guardrail to complete reinstallation.

A numerical scoring system was developed whereby correction of low guardrails may be prioritized according to the degree of hazard presented by the low guardrail. The scoring system employs an equation based on the guardrail performance variables considered to be most important; namely, guardrail heighr, vehicle speed, and expected number of encroachments. Additional factors that can affect the degree of hazard but were not included in the equation are guardrail type, consequences of vaulting, and soil type. Provisions were made for increasing total scores for situations in which these variables are important.

Assessment:

Report might be used to show typical extent of the problem of non-standard railing heights. Assumptions used for establishing height and speed indexes in scoring system are subjective and might be checked with resuits of this study. However, no definitive relationship between railing height and barrier performance is given.

Table 1. Synopses of directly related reports (continued).

SYNOPSIS - NEW YORR STUDY

Soference:
J. E. Bryden, "Development of Proposed Height Standards and Tolerances for Ligh=-Post Traffic Barriers," Iransportation Research Record 970, 1984.

rrocedure:

1. Vehicle geometric characterics were measured for virtually all 1983 model passenger vehicles, light trucks, vans, and utility vehicles. Characteristics of primary concern were:
a. Bumper override point - height to a point on the bumper which can lead to vaulting if that point reaches the top of a barrier.
b. Hood underride point - height to a point on the hood which can result in underriding if this point gets below the bottom of the rail.
2. Assumed vehicle suspension range of ± 3 inches on selected design vehicle and established desired heights to prevent underride (submarining) or override (vaulting). Top of rail heights for both conditions were:
Cable - 27 in
Box-beam - 27 in
W-beam 30 in
3. Supported results of item 2 from previous New York and TTI fullscale tests (no vaulting or submarining implies support). Also supported results from re-exumination of previous New York accident study.
4. Mounting height tolerances of ± 3 inches were found to be satisfactory for most of the vehicle profiles.

Assessment:

Procedure is satisfactory. However, the study is limited to the weak post systems that are predominant in New York but not used much in other States.

Table 1. Synopses of directly related reports（continued）．

SYNOPSIS－III STUDY

References：

1．H．E．Ross，Jr．and D．L．Sicking，＂Guidelines for Placement of Longitudinal Traffic Barriers on Roadside Slopes，＂Contract No． DOT－F！－11－9343，TII Research Report 3659－1，December 1982.

2．H．E．Ross，Jr．，D．G．Smith，D．L．Sicking，and P．R．Hall， ＂Tests of Longitudinal Barriers on Slopes，＂Contract No．DOT－FH－ 11－9343，ITI Research Report 3659－2，April 1979.

Procedure：

1．A limited crash test program（7 tests），supplemented by computer simularions（ H VOSM），was used to evaluare performance of longi－ tudinal barriers placed on sloping terrain．

2．From careful study of the crash test film，it was concluded that front bumper position relarive to the barrier at impact was the critical factor with regard to vehicle containment and redirection． Barriers were categorized as shown in table l．1，and containment criteria for the various barrier types are shown in figures 1．1， 1．2，1．3，and 1．4．

3．From the criteria of item 2，HVOSM runs were made to develop placement guides（75 figures）for the barrier categories of table 1.1 and various combinations of travelway，shoulder，and embankment slopes（seefigure 1.5 and cable 1．2）．

Assessment：

This report states that＂it was concluded that $⿴ 囗 十 ⺝ 丶 O_{0}$ did not have sufficient capabilities to simulate vehicle／barrier impacts for nonlevel approach terrain．Instead，it was used to accurately determine vehicle kinematics upon impact with the barrier．＂While an entire appendix was included to show that GUARD was not a satisfactory program，no support for the accuracy of sVOSM，either by included documentation or by reference，could be found in the report．

Barrier categories（table l．1）should be useful in establishing the recommended guardrail systens．The containment criteris may or may not be applicable but should provide a good starting point for this study．A better indicator for underride might be the hood underride height of the New York study rather than this midheight of the bumper．

Table 1. Synopses of directly related reports (continued).

Table 1.1 Barrier Categories.

```
BARRIER
CATEGORY
    CORRESPONDING BARRIER
    TYPES
    A
    G1, MB3
    B
    C
    D
    69, MB9
    E
    M84W
```

Table 1. Synopses of directly related reports (continued).

Figure 1.1 Containment Criteria, W-Beam Barrier.

Table 1. Synopses of directly related reports (continued).

Figure 1.2 Containment Criteria, Thrie Beam Barrier.

Table 1. Synopses of directly related reports (continued).

Figure 1.3 Containment Criteria, Cable Barrier.

Table 1. Synopses of directly related reports (continued).

(b) Box Beam Median Barrier

Figure 1.4 Containment Criteria,
Box Beam Barrier.

Table 1. Synopses of directly related reports (continued).

Table 1.2 An Index for Placement Guidelines by Figure Number.

NOTE: Figure numbers in table correspond to those given in Appendix D.

		TRAVELhAY SLOPE				
		${ }^{2} \mathrm{~T}=-20: 1$		${ }^{1} \mathrm{~T}^{2}=-10: 1$		${ }^{\text {d }} \mathrm{T}^{\text {4 }}$ 8: 1
		Shoulder slope		Shoulder slope		Shoulder Slope
Case	Category	$A_{5}=-20$	$A_{5}=20$	$A_{s}=-20$	$A_{s}=-10$	$A_{s}=20: 1$
1	A	0-1	D-2	0-3	0-4	0-5
2	A	D-6	0.7	0-8	0-9	D-10
3	A	D-11	0-12	D-13	D-14	D-15
1	B	D-16	0-17	D-18	D-19	0-20
2	B	0-21	0-22	D-23	0-24	D-25
3	8	D-26	0-27	D-28	D-29	D-30
1	c	0-31	D-32	D-33	D-34	D-35
2	C	0-36	D-37	D-38	0-39	D-40
3	c	D-41	D-42	D-43	D-44	D-45
1	0	0-46	D-47	0-48	D-49	D-50
2	0	D-51	0-52	0-53	D-54	D-55
3	0	D-56	0-57	D-58	D-59	D-60
1	E	D-61	0.62	D-63	D-64	D-65
2	E	0-66	D-67	0-68	0-69	D-70
3	E	0.71	0.72	0-73	D-74	0-75

Table 2. Roadway/roadside geometric parameters.

a_{t}	+48	-20		-10,	
a_{s}	+20	+20	-20	+20	-10
$a^{*} e$	+4	+4	+4	+4	+4
	+6	+6	+6	+6	+6
	+8	+8	+8	+8	+8
	+10	+10	+10	+10	+10
	-8	-8		-8	
	-4	-4		-4	

requested and received from ITI. A computer program was then prepared for graphical presentation of the data. A sample plot is shown in figure 2. The manner in which these curves were used to establish barrier height limits is discussed in chapter V.
B. Vehicle Survey

1. General. With the apparent importance of both bumper height and possibly bumper geometry in establishing critical barrier override/ underride heights, a vehicle survey was undertaken to establish represeritative values and ranges. Sales figures for the more comnon vehicles sold in the United States were collected for the years 1980 through 1983. Field trips were then made to measure the bumper geometry and to collect brochures with photographs of the different bumper types.

Based on crash test results with W-beam traffic barrier, it was determined that the leading edge or surface of the bumper was critical for both underride and override. Using this relationship, the bumper geometries of current vehicles were grouped into six categories as shown in figure 3. The collected sales information was totaled and weighted to reflect the average bumper override/underride heights. As shown in table 3 , the data was then divided into ranges of override and underride heights. Figures 4 and 5 are underride/override exceedance curves prepared from these results. Shown are heights at the 85 -percentile levels, which produced different values for underride/override heights [18.8 in (48 cm) and 17.1 in $(43 \mathrm{~cm})$]. It was decided to select a single value of 18 in (46 cm) for both underride and override heights. As shown in figure 4 , this was the 98-percentile level for underride and, from figure 5, the 99percentile level for underride. The exceedance curves in figures 4 and 5 describe what percent of cars purchased from 1980-1983 had bumper values that exceeded a given value. Example: 98\% of the vehicles had bumper heights that were equal to or greater than 18.8 in for underride consideration as shown in figure 4. Thus, a design vehicle with a single 18 -in

Figure 2. Sample plot of bumper height positions.

Table 3. Vehicle survey data.

-		1900	191	1982	1983	ACC. SALES	OUER	unden
anc	altimmet	\cdots	\cdots	30175	126008	--73187	17.0	19.3
PLY	NORI20\%	78184	75377	46907	36763	257173	16.0	18.5
	grans futit	13612	1408	18259	15101	41446	14.3	19.8
	RELIAMT	104834	176977	146762	157247	605142	15.5	21.0
cmat -	LE DABOM M/X	6531\%	46991	18975	10309	281394	16.0	21.0
	WEU TGRELR STM	-	5194	42729	73729	142348	14.5	17.5
	MEU TOANER E	,	0	119	50091	50210	16.0	21.0
posee	OMM!	6:240	36038	40082	50451	207731	16.0	18.3
	Chatger/024	0	31743	41275	45475	131993	19.0	20.6
	aries	10194	149433	113676	119400	463005	16.5	20.1
	ghtama	0	0	,	8761	8761	15.0	19.0
	600/400	-	3150	28946	28480	60584	16.3	19.5
	diplomat	33157	25341	24666	22603	106224	15.1	18.0
F0as	Escary	60196	284967	337667	326333	1009103	17.0	19.8
	nustame	225290	194985	119526	116976	616777	17.0	20.0
	TEMPO	-	0	,	136148	13614t	17.1	20.1
	f-312\%	127248	67779	42515	134710	374318	16.0	20.5
	LT3	3412	0	26820	165396	195228	16.5	20.0
	crauy utctarin	142819	113109	126065	119903	501888	16.0	20.8
	EXP	0	34502	39021	19754	113277	14.0	19.5
HER.	LYM	11786	92109	95959	7834	295840	17.4	20.0
	Xf-7	5185	2\%74	13609	17027	183199	19.0	20.5
	marginis	0	0	10645	45194	73829	16.0	19.3
	GRaMl Mangurs	52849	53145	77348	9645	279797	16.5	21.5
LINC.	LIMEALM	30114	27731	42537	59426	162010	16.5	21.5
	hame VI	35371	29733	27929	21257	121211	16.5	20.0
6n. BUIEX.	SXYMayk	5380	0	46942	72990	125320	18.1	20.0
	SKYLAET	173741	200460	141764	102763	420730	17.3	19.5
	CEMTUEY FT	-	2611	49177	150218	232844	16.1	19.9
	REEAL SE3/COmP	345104	332005	222169	234138	1133310	15.0	19.3
	LE samit	17429	12263	108989	131558	432216	15.0	19.5
	ELEETRA	61792	57234	34594	50106	238731	15.5	19.5
	Riviena	42917	47464	43473	33304	187900	16.0	21.0
Call.	cadillat	126151	138941	154229	176063	595331	15.4	18.0
	ELPatais	52142	54349	57243	71424	23518	14.3	19.8
	cinatitim	0	14604	13774	14188	47564	16.5	19.5
	SEVILLE	34709	22724	24029	33522	114914.	14.9	17.1
CWEV.	CMEVETIE	371908	346307	231927	178759	1138911°	15.1	18.6
	Cavalize	156320	14072	121392	259397	619181	16.0	19.5
	citatiom	374706	300184	186848	92379	954117	16.5	19.5
	camane	116024	9460	182946	171266	572544	17.0	21.0
	CELETESTT	\checkmark	137	T01JT]	710358	213885	18.8	7.0
	nowte camle	165430	1alisi	99934	105797	331547	16.4	20.0
	CORVETTE	36507	29039	22477	27144	115167	12.5	12.5
	CHEV/GAPIIEE	261119	210424	204193	230936	918366	15.1	20.0
OLIS.	OMESA	17242	109401	72312	4918	319431	16.5	10.8
	cuflast $/$ EIE	210784	107932	113921	191724	704877	17.5	20.0
	Cutlass $/ 8 \mathrm{~F}$	25879	266676	290564	331179	113664	15.0	19.1
	OLPs 51	147997	156462	180844	228770	714249	14.8	19.5
	OLP ${ }^{\text {ct }}$	73464	04583	17222	119326	366793	16.5	19.5
pout.	2000/3unazis	132634	7564	57048	61313	353875	17.0	20.5
	Photulx	98932	12285	49327	24362	253126	17.5	19.5
	fintains	11392	5218	105684	90777	330213	16.0	19.6
	4004	-	1325	53794	12513	149632	16.9	19.0
	3ewneville	77911	73981	76063	34122	312014	14.5	19.1
	shant pezz	118494	127214	1357	87558	419608	16.0	20.8
		105390	12420	4176	26929	219123	15.6	19.5
CuRy/uIt nomes	colt	socte	42746	73031	73671	242167	16.5	18.4
	E2vic	138735	154491	132469	127836	533738	15.3	18.5
	accent	183777	172957	195324	171738	725744	16.9	11.9
	Priclent	50676	43451	37972	4118	17316	16.4	19.9
nama	616	63573	62195	54348	51313	230449	14.5	19.8
	426	53281	40475	58740	49361	244937	15.5	18.5
	88-7	4373	43418	50062	32314	189737	15.1	18.5
masmam	310/P星sm	14204	77904	52115	60253	207230	14.0	20.1
	SEmpat	0	\bigcirc	131749	209189	341678	16.3	19.5
	stanza	-	1523	59152	44429	132184	16.0	20.1
	naximm	4440	35953	54187	74209	173619	15.5	18.9
	20088	92514	77062	48436	31159	249174	17.0	24.1
	200/3607x	71333	62000	57260	71144	262757	13.5	15.1

Table 3. Vehicle survey data (continued).

A) jus 51

14.0 T0 14.9	15.0 10 15.9	16.01016 .9	17.0 9087.9	OTMERS
4.31	30.00	46.77	17.91	. 6

($46-\mathrm{cm}$) bumper underride and override height was selected for subsequent use in establishing the barrier height limits.
2. Aerodynamically Styled Vehicles. Later in the project a minimal effort was expended in investigating the influence of the low front profile cars and possible associated problems with barrier mounting height. Figure 6 gives data from a limited survey. One full-scale crash test was conducted with the Datsun 2602X shown at the bottom of the list.

AEPODTRAKICARLY STXLED FRORT ETEDS

Car	Year	A	B	c	D	E	F
2802x	80	38	36	6	13	33	
Dodge Datona	85	58	42	9	$101 / 2$	37	
2802X	83	44	40	$41 / 2$	15	33	
Chevy 228	86	38	44	$71 / 2$	$121 / 2$	34	
Porche 924	81	62	$341 / 2$	$41 / 2$	13	35	$51 / 2$
Maxda RX7	83	32	35	$51 / 2$	$151 / 2$	31	
300 2X	85	24	$351 / 2$	7	14	32	
Corvette	85	49	41	$71 / 2$	10 1/2	33	
Firebird	85	$491 / 2$	44	10	$121 / 2$	35	
Mazda RX7	86	$311 / 2$	35	6	$131 / 2$	32	
Datsun 2602x	74	33	39	4	$143 / 4$	32	$33 / 4$

Figure 6. Aerodynamically styled car geometries.
A. Selection of Simulation Program

As indicated in chapter II, an apparent lack of definitive performance information existed in the general literature for the effects of varying barrier railing heights. Determination of critical override/underrice heights for the five barrier categories of table 1.1 by full-scale crash tests was not economically feasible. Thus, a major effort was directed in this study toward the development of an analytical model to provide simulation guidance for these effects.

The computer program selected for simulation use was HVOSM, Version RD2. ${ }^{(5)}$ Other codes considered were GUARD ${ }^{(6)}$ and CRUNCH ${ }^{(7)}$. Preliminary reasons for making this selection are discussed in appendix B. Other justifications for utilizing HVOSM-RD2 as the most applicable code of available programs were based on the following:

- It had what was believed to be the most advanced vehicle model. In particular, it had a steering/wheel degree of freedom (DOF) while the GUARD vehicle model simulated a "locked" wheel condition. The DOF associated with the HVOSM wheels might have a pronounced effect on wheel snag vehicular behavior.
- It had the capability of simulating vehicle side and bottom sheet metal/barrier interaction forces. The GUARD vehicle was limited to only side panels for the sheet metal and wheels. Notably, interaction between the vehicle bottom and barrier rail top might significantly enhance vaulting potential.
- HVOSM had been extensively used by several research organizations. This had attributed to significant validation data being collected over a number of years. On the other hand, programs such as CRUNCH and GUARD had not been validated to a degree which would warrant their use in this particular hardware development program.
- Documentation associated with GUARD and CRUNCH was very limited to the unfamiliar user. In turn, an inordinate amount of time would be required to be able to utilize
these codes with the same efficiency as when using the HVOSM-RD2 program.

B. HVOSM Modifications

The tape of HVOSM-RD2 was furnished by FHWA at the start of the task. Modifications were first made to convert the program to operational status on the Institute's CDC equipment. Two sample cases (one rigid and one flexible) were then run and compared with previous results. Both runs checked out satisfactorily. Thus, the program was ready for the proposed wheel snagging (underride) and vaulting (override) modifications.

As modifications were tried, problem areas arose in the basic program involving the correct passing of variables via common blocks from one subroutine to another. Notably, an error was found involving the lack of COMMON block INTG in subroutine EGYSUM. This error had not been discovered previously because the earlier runs did not use EGYSUM.

Work continued on modifying the HVOSM-RD2 program and fixing further unexpected errors that appeared in the code as the work progressed. The extensive modifications that were made in the code included the following:

- Capability to include post stiffness characteristics that differ in the longitudinal and lateral directions.
- Wheel interaction with post (wheel snagging capability).
- A reaction force capability that is imposed on the right front wheel if the top of the tire is below the bottom of the rail (wheel underriding capability).
- A vaulting or overriding capability of the barrier rail.
- User ability to specify barrier blockouts.
- The vehicular response due to the vertical (downward) deformation of the barrier railing).

One problem that arose was that the overriding aspect could not be simulated in the original RD2 code. This was verified by the simulated redirection of a $4300-1 b(2000-\mathrm{kg}$) vehicle by a $5-\mathrm{in}$ ($13-\mathrm{cm}$) high flexible barrier system. Output data showed reaction force locations on the vehicular body well above the top of the rail. Changes were made to eliminate these erroneous vehicular-barrier forces.

With these changes and modifications, the program was considered ready for the validation efforts.
C. HVOSM Validation Efforts

To verify the changes and modifications of iHOSM-RD2, the program predictions were compared with full-scale crash test data. The first tests were two conducted on slopes by the Texas Transportation Institute (TTI), as shown in figures 7 and 8. ${ }^{(4)}$ Table 4 shows HVOSM validation results involving the vehicular vaulting of these tests. In particular, Case Nos. 4 and 7 were validation runs. Cases No. 5 and 6 were performed to verify that the vehicle would not vault the barrier when the railing height became great enough. Note in TTI test $3659-1$ that the vehicle vailted the railing with less redirection than in test $3659-3$. This aspect was reflected by the two validation runs (cases 4 and 7). Specifically, the maximum recorded lateral displacement of the bumper monitoring point (BMP) was greater in case 7. With respect to the 50 -ms acceleration levels, very low longitudinal and lateral values were simulated in case 7 because of the HVOSM vehicle sheet metal making contact with the very top of the railing. This induced primarily a vertical reaction force, which indicated the need for the incorporation of vertical vehicle-barrier interaction as delineated in section B of this chapter.

Five full-scale validation tests were then conducted in this study (see chapter IV and appendix A). Override (vaulting) was first checked. Difficulties initially arose when effort was made to simulate the vaulting of a $22-\mathrm{in}(56-\mathrm{cm})$ barrier system (Tests $\mathrm{BH}-2$ and $\mathrm{BH}-5$) and the redirection

FIGURE 8, SUMMARY SHEET FOR TEST I.

Test No.3659-1
Date 5/23/7
Drawing. GA(is)
leam Rail. 12 ga steelxi2.5 ft (3.8 m)
Post W6x $5.5 \times .75 \mathrm{ft}(1.7 \mathrm{~m})$
Pose tembedment.....42 (a. (1.1m)
Post spacing : 0 . 6.25 (t (1.8 m)
Length of Instailation 200 Pt (61 m) Ground Conditions.. . Wat
Tham hail Dafliagsion
 Meximum Permonent. . 0,96 ft (0.29 m$)$ Vehicla. 1974 Plymouth
Vehicle Miss 4500 lbs (2045 kg)

Figure 7. TTI Test 3659-1.

FIGURE 25 . SUMMARY SHEET FOR TEST 3.

Test No.3659-3
Date $7 / 13 / 78$
Deam Ril.......... 12 ga 5 teel $\times 12.5 \mathrm{ft}(3.8$ a

Post Embedment:....42 in. (1.1 m)
Post Spacting 6225 ft (i)
post spacing iniliation. 200 ft (Cl .9 m$)$
Length of installation . 200
Deam Rall Defleceion
Manfaum Dynmalc.
Maniman Permanent.:....
4.1 ft (1.24 m)
vehicio. 1974 plymouth vehicle Masi 4500 lbs (2045 kg)

Impact Speed. $62.9 \mathrm{mph}(101.21 \mathrm{k} / \mathrm{h}$)
mpact Angle. 26.25°
Exit Speed. $3 \mathrm{il} 13 \mathrm{mp}(50.09 \mathrm{~km} / \mathrm{h})$
Exit Angle. Penetrated Rall
Vehicle Acceleration
(max 0.050 sec avg$)$
longltudinal. 8.529
Transverse. 5.97 g
yertical. 5.87
Vehicle Rebound Distance. . . Penetrated Rail Yehicle Damage

SAD :............ OIRFQS

Figure 8. TTI Test 3659-3.

Table 4. HVOSM simulation summary.

CaseNo	Description	Acce1	Levels (G's)		MAX BMP \dagger (in)	$\begin{gathered} \text { Barrier } \\ \text { Location }\left(Y_{B}\right) \end{gathered}$	Comments
		Long	Lat	Vert			
4	TTI Test 3659-3	$\begin{gathered} 6.4 \\ (8.5) * \end{gathered}$	$\begin{gathered} 5.2 \\ (6.0) \end{gathered}$	$\begin{gathered} 2.2 \\ (5.9) \end{gathered}$	399"	340'	```27-1n Barrier (figure 7) Vehicle Vaults Barrier```
5	Test 3659-3 w/30-in Barrier	9.3	7.7	4.6	395"	$340^{\prime \prime}$	Vehicle Straddles Barrier
6	Test 3659-3 w/33-in Barrier	8.2	7.0	3.7	387"	$340^{\prime \prime}$	Vehicle Redirected
7	TTI Test 3659-1	$\begin{gathered} 0.5 \\ (7.0) * \end{gathered}$	$\begin{gathered} 1.8 \\ (9.5) \end{gathered}$	$\begin{gathered} 2.6 \\ (4.5) \end{gathered}$	451 "	268'	```27-in Barrier (figure 6) Vehicle Vaults Barrier```

tLocation of Bumper Monitoring Point (in) at termination or maximum lateral location.
*Test Results
of the vehicle with a 24-in (61-cn) rail height (Test BH-4). Review of test films showed the vehicle bumper striking the upper sloped portion of the W-rail for Tests $B H-2$ and $B H-j$. This induced a significant vertical uplifting force that contributed to vaulting. In HVOSM, however, the barrier was represented by a flat vertical plane as was the vehicle side panel. Thus, the program could not simulate this phenomenon. Accordingly, additional changes were made to the code to effectively simulate this aspect if the vehicle bumper struck the upper portion of the rail. This entailed the user's setting a FLAG in the input data deck if simulating a full-size sedan impact into a flexible barrier having W-beam or thrie beam geometry.

Three simulations were performed to validate this modification through comparison with full-scale Tests $\mathrm{BH}-2, \mathrm{BH}-4$ and $\mathrm{BH}-5$. Test results of these $60-\mathrm{mph}(95-\mathrm{km} / \mathrm{h}) / 25-$ degree impacts into a 22-in (56-cm) and 24-in (61-cm) high flexible barrier and corresponding simulation results are given in table 5. Notably, vehicular vaulting was predicted with the HVOSM code for Tests BH-2 and BH-5. Barrier deformation and number of post failures compared favorably for Test 3H-2. Good results also existed for Test BH-4, where the vehicle redirected in both fuil-scale test and simulation run.

Validation of the modified HVOSM-RD2 program by comparison of simulation results with full-scale underride Tests $\mathrm{BH}-1$ and $\mathrm{BH}-3$ was next conducted. Results, as shown in table 5, demonstrated a slightly stiffer barrier response in the simulations over actual tests. Simulation of Test $\mathrm{BH}-1$ resulted in two post failures versus four in the actual test, while the BH-3 simulation had five post failures compared to seven during the crash test. Notably, however, the simulations did correctly predict vehicular (bumper) underride for Test $\mathrm{BH}-3$ and no underride for Test BH-1. Further, the simulation results ($\mathrm{BH}-3$) included a pitching down motion of the vehicle as the right front bumper caught under the barrier railing with the railing impeding any uplifting motion during redirection. As anticipated, the longitudinal acceleration from the simulation of Test BH-i was
Table 5. Validation test/HVOSM simulation comparisons.

Remarks
Velitcle redirected - Left front wheel torn off
Vehicle redirected
Rail fractured - Vehicle pocketed and stopped
Vehtcle underrode barrier - redirected
Vehicle vailted tieading Angle - 18.2***
Velicic vaulied elieding Angle $=24.9{ }^{\circ}$
Vehicle redirected
Vehicle redirected
Vehicle vaulted P Heading Angle - 19.90
Vehicle vaulted Hending Angle $=24.5^{\circ}$

Mo of Mnilome 50-m Accelerations*

Dynamic
Deflection
总
Haluea as determined from (cine/tranaducer). MA - Not Avaliable
an Measured on right front wheel panmed over bartier.

Tegt Ho	Barrier Helglit (In)
UADERRIDE TESTS	
8H-1	30 coupled
Stunlation	
803-3	32 coupled
Stmilation	
OVERALIDE TESTS	
aH-2	22 coupled
Stmulation	
1804	24 coupled
Similation	
alli-5	22 uncoupled
Simulation	

significantly higher (7.3 g 's) compared to the test results (4.2 g 's). This was believed due to the wheel being torn off during the full-scale test, a phenomenon well beyond the capabilities of the HVOSM code.

Based on favorable validation results from test results of the TTI slope study and the five validation tests that had been conducted, modification and validation of the HVOSM program were considered somplete. A briefing with EHWA was then scheduled to discuss findings to date and to direct subsequent work. The following sumarizes the modifications that had finally been made for the HVOSM-RD2 code to permit the evaluations of vehicle override/underride:

- Defined discrete posts, up to 36 posts
- x, dimension
- spacing, x
- location of axis of rotation
- stiffness, x,y
- maximum displacement for post failure, x,y
- location of base of post.
- Defined barrier system
- BARRIER VII ${ }^{(8)}$ used to obtain 5th order polynomial for rail-post interaction (allows post to deform without vehicle contact).
- Modification made to allow vehicle to vault or ramp over the system.
- Modification permitting transfer of railing vertical force component to vehicle; i.e., vertical stiffness of rail is input
- upward for override condition - downward for underride condition.
- Vehicle model modification
- diameter and width of hub specified to interact with posts.

Based on comments made at a project briefing, there was some concern about sensitivity of certain HVOSM parameters as they affected vehicle trajectories prior to barrier impact. The parameters mentioned included suspension damping and steering/braking. Thus, a limited series of sensitivity analyses were conducted to check these concerns.

1. Suspension. The first sensitivity study was performed with HVOSM-RD2 on the viscous damping coefficients and the suspension load deflection rates to determine their effects on the bumper location above a given terrain. The model used for the studies was a 1978 Honda Civic with suspension properties measured in a previous University of Michigan study. Figure 9 shows a plot of two bumper heights with respect to a cross section of the terrain. Used in the calculations were slopes of the lower and upper portions of the curves in figure 10 for the front/rear damping coefficients and corresponding offsets. A small variation in the rebound height is indicated in figure 9 . When the damping coefficients were varied by ± 20 percent, the change in bumper height was less than 1 percent as shown in figure 11.

The load deflection rates as represented in figure 12 were varied by ± 50 percent, and the bumper height variation is shown graphically in figure 13. As shown, this affected the bumper height very slightly.

Figure 14 compares the response of the Honda with the response of a VW Rabbit modeled under a separate FHWA contract. The load deflection rates and offset values were quite different for each vehicle, yet the change in bumper height was insignificant.

Based on these analyses, it was concluded that suspension load deflection rate and damping had no significant effect on the bumper heights of a vehicle traversing a side slope.

Figure 9. Bumper height for high damping characteristics and low piston velocity.

Figure 11. Bumper height sensitivity to damping coefficient.

GENERAL FORM OF SIMULATED SUSPENSION BUMPER CHARACTERISTICS

Figure 12. Suspension load deflection variables.

Figure 13. Bumper height sensitivity to suspension load deflection rate.

Figure 14. Bumper height for Honda Civic and VW Rabbit suspension load deflection rates.
2. Steering/Braking. The sensitivity analysis of steering/braking could not be conducted with the RD-2 version of HVOSM because the version did not include steering/braking inputs. Thus, the original TTI version was selected for use. However, this version did not include the bumper height subroutines and had to be modified to include the subroutine before the analysis could be started.

The first set of runs was made on an embankment slope of $4: 1$. Torques were applied to the wheels to simulate full braking, and steering angles of 20°, 0°, and -20° were specified as driver input. As shown in figure 15, the effects on bumper heights were insignificant. On inspecting the vehicle c.g. lateral and longitudinal displacements, it was found that no changes occurred between the three cases until wheels of the airborne vehicle made good contact with the ground (between $Y=1400$ and $Y=1500$ inches in figure 16). This was reasonable and indicated that a flatter slope should be used to reduce the airborne tendency. Thus, runs were made on a 10:1 embankment slope, as shown in figure 17. Effects on bumper height and vehicle lateral/iongitudinal trajectory were even less pronounced.

This lack of change, particularly in the vehicle lateral/ longitudinal trajectory, did not look reasonable. In the two sets ∂f runs, the specified coefficient of friction between the tires and ground was $u=0.25$. A value of $u=0.50$ was used to calculate the wheel torques for full braking. . With locked wheels and the low coefficient of friction as the vehicle moved down the slope, the low effect of steering was not as unreasonable. Thus, the second set of runs was repeated with $\mu=0.25$ for partial braking torque and $\mu=0.50$ for the tire/ground coefficient of friction. Results are shown in figure 18, where it can be seen that steering toward the road ($+20^{\circ}$) did stop the vehicle's downard travel and turned it back. The change in bumper height was not significant except for a small zone down from the slope break where a variation of $\pm 1 / 2$ in is indicated.

Figure 15. Steering/braking effects on 4:1 embankment slope.

l.aTERAL DISPl.ACEMENT

Figure 16. Lateral and longitudinal displacements.

Figure 17. Steering/braking effects on 10:1 embankment slope.

Figure 18. Steering/braking effects with coefficient of friction $=0.50$.

Based on these results; it was concluded that reasonable steering/braking variations had minimal effect on bumper heights.
E. Final Checks on and Disposition of HVOSM

Tests BH-7 through BH-10 were conducted on barriers placed on side slopes (see chapter IV and appendix A). Prior to construction of the test installation, concern was expressed by FHWA regarding the effects of traversing the flat runway approach to the $10: 1$ superelevation. As shown in figure 19(b), the width A had originally been proposed to be 10 ft $(3.0 \mathrm{~m})$. In order to examine the difference between traversing the cross sections shown in figure 19, a series of HVOSM simulations were conducted. As shown in the summary of results in table 6 , a width A of $10 \mathrm{ft}(3.0 \mathrm{~m})$ produced significantly different bumper heights at the barrier locations than the constant $10: 1$ slope of figure 19(a). A width of A of 15 ft $(4.6 \mathrm{~m})$ produced bumper heights that were essentially the same as the constant slope. Thus, based on these simulations, the test geometry was revised to $A=15 \mathrm{ft}(4.6 \mathrm{~m})$.

To provide guidance in establishing test railing heights for vehicle underride/override, the HVOSM program was exercised. The underride height (grade to lower point of rail) on the test vehicle for Test $\mathrm{BH}-6$ had been measured at 20 in (51 cm). Table 7 shows agreement with the test in that underride occurred at the $32-\mathrm{in}(81-\mathrm{cm})$ overall barrier height. The simulation shows in the table that vehicle redirection would have occurred with a $30-$ in $(76-\mathrm{cm})$ overall height.

For the sloping terrain Tests 7 through 10, a single underride/ override height of 18 in (46 cm) was used, corresponding to the design vehicle. Table 7 shows a threshold height of $30 \mathrm{in}(76 \mathrm{~cm})$ for Test No. 7. A height of 30 in (76 cm) is indicated for Test No. 8, but the impact angle should be changed to the more critical 15°. A $22-i n(56-\mathrm{cm})$ height should be used for Test No. 9. A $26-\mathrm{in}(66-\mathrm{cm})$ height should be used for Test No. 10 , but the impact angle should be changed to the more critical 25°.

(a) Proposed Sloping Terrain

(b) Test Geometry

Figure 19. HVOSM simulation geometry.

Table 6. Summary of HVOSM simulations - sloping terrain.*

	Figure 19 Case	Gemetry	A		$\frac{50}{\text { Vehicle Bumper Height, in }}$
1	(a)	-	0.80	-27.15	
2	(b)	10	-3.23	-30.10	
3	(b)	15	0.94	-27.13	

* All simulations used 1800 ib car, 60 mph , 25-degree conditions.

Table 7. Critical underride/override barrier mounting heights as determined by simulation results.

Vehicle	Impact	Test			Barrie				
Angle	Angle	Criteria	$32^{\prime \prime}$	$30^{\prime \prime}$	$28^{\prime \prime}$	$26^{\prime \prime}$	241	22^{11}	Remarks
1800	25°	Underride	S (T)	n					
1800	25°	Override	OT*	OT* (T)	R	**			hinge
4500	25°	Override	R (T)	v					point
1800	15°	Underride	S	S (T)	R	R			tests
4500	15°	Underride	S	S (T)	R				
1800	25°	Override	S	S	S	S (T)	R (T)	V/OT	
4500	25°	Override	S	S	S	S (T)	R (T)	V/OT	embankment
1800	15*	Underride	S	S	S (T)	R			tests
4500	15°	Underride	S	- S (T)	R				

$\underset{6}{ }$
S - snagging and/or underriding
A - redirecting
V - vaulting
OT - overturning

* - overturn was toward the road
** - unpredictable results because of HIVOSM program limitations
(T) - Threshold mounting height is between the 2 height values shown

On completion of the test facility and conduct of the first of the slope tests (Test BH-7), simulation runs were made with the modified HVOSM program to compare predictions with measured test results. The comparisons of three of these runs are shown in table 8 . As shown in the table, the largest discrepancy occurred in the bumper heights at impact. Several other runs were made with various input changes, but significant improvement in correlation was not achieved.

Because of the criticality of bumper heights in the important end result that was expected from the study (see chapter V), it was considered essential that satisfactory correlation between test and simulation be achieved. Thus, an extended effort was made to check the adjustments of additional HVOSM input parameters.

As a first step, the actual terrain of the test installation was surveyed for input into the existing HVOSM model. Various driver input steer angles and times of duration were then entered into the system to simulate the vehicle trajectory after breakaway from the guide cable. Table 9 shows the comparisons of test results and the various simulation predications. As shown in the table, no significant improvement in bumper height correlation was achieved. Because of the criticality of bumper heights, it was decided to add a large car underride test [4500 lb $\left.(2000 \mathrm{~kg}) / 60 \mathrm{mph}(95 \mathrm{~km} / \mathrm{h}) / 15^{\circ}\right)$ for the next test $\mathrm{BH}-8$.

Efforts continued to obtain satisfactory correlation of vehicle bumper heights. As shown in table 10 , computer simulation 1 and the results of Test BH-8 compared very favorably. For a 19 -degree departure angle, the HVOSM simulation predicted no underride, as confirmed by the test. Simulation 2 with the standard 15 -degree impact did not predict underride.

The difference in bumper height between the two simulations of table 10 is substantial, indicating that the impact angle was a critical variable in these tests. In previous tests, vehicles had been released from the guidance cable at the edge of the concrete approach apron at the

Table 8. Comparison of HVOSM predictions with Test BH-7 results.

	Item	Bumper Underride Height at Impact \qquad (1n)	$\begin{gathered} \text { Impact Speed } \\ \text { (mplı) } \\ \hline \end{gathered}$	Impact Angle (degrees)	Memarks
	Test Bll-7 Resulta	22.1	58.3	15.6	Values measured at impact with barrier. Speed trap speed at edge of apron $=58.8 \mathrm{mph}$
	Simulation 1	19.46	58.3	16.77	Run with initial speed = 58.8 mph and Initial angle 18 degrees
	Simulation 2	18.35	57.9	16.02	Same as Simulation 1 except for initial angle $=17$ degrees
$\stackrel{\sim}{\square}$	Simulation 3	18.63	58.2	15.66	Same as Simulation lexcept for increase in base material coefficient of friction and softening of vehicle suspension

NOTE: All simulations predicted underride of bumper and vehicle redirection.

Table 9. Comparison of HVOSM predictions with Test BH-7 results for steer angle input.

		1tem	Bumper Mt - Impact (Inchee)	$\begin{aligned} & \times \text { Lucatson } \\ & \text { (impart } \\ & \text { (Inclien) } \end{aligned}$	Jmpact Augle (Jegrefe)	Inpue Steer Andien (degreen)	$\begin{aligned} & \text { Time of } \\ & \text { Steer Angles } \\ & \text { (sec) } \end{aligned}$		Remanks
	nnl 7	Test Resulte	22.1	1758	15.6	--	--		
		Stmulation 1	19.07	1617	15.35	--	--	Run with actuni surve	eyed terrnin
		Stmilat ton 2	19.54	1800	12.0	-1	. 001 t0.000	Steering angle Input from nteer cable.	in simulate vehicle break-away
		Simolation 3	19.54	1600	15.75	-1	. 001 to . 002		\cdots
		Sturiat ton 4	19.68	1710	15.2	-1	. 001 to . 003		"
		Stualations	19.62	1690	15.54	-2	. 001		"
		Slmulation 6	19.58	1709	15.21	-1.5	$\text { .001-.002 } .003-.004$		\because
\%		SImunation 7	19.78	1136	14.92	-3	. 001		${ }^{*}$

Table 10. Computer simulation/Test BH-8 comparison.

| Test/Simulation | Test BH-8 | Simulation 1 | Slmulation 2 |
| :--- | :--- | :--- | :--- | :--- |
| Initial Speed | 60 mph | 60 mph | 60 mph |
| Initial Angle | 18° (estimated) | 19° | 15° |
| Impact Speed | 59.5 mph | 58.83 mph | 59.55 mph |
| Impact Angle | 19.5° | 19.5° | 15.6° |
| Impact Bumper Ht | $28.5^{\prime \prime}$ | $28.4^{\prime \prime}$ | $23.5^{\prime \prime}$ |
| $\boldsymbol{\omega}$ Remarks | Vehicle redirected | Predicted vehicle redirection | Predicted underride/
 snag |

test site. After disengagement, the vehicle moved up the $15-\mathrm{ft}$ (4.6-m), 10:1 slope and then down the $12-\mathrm{ft}(3.7-\mathrm{m}), 20: 1$ slope to the barrier. On assuming that the vehicle would drift to the left, an angle of 18° had been laid out on the apron. In Test $\mathrm{BH}-7$, the $1800-1 \mathrm{~b}(800-\mathrm{kg})$ car did move to the left and impacted the barrier at 15.6°. However, the $4500-1 b$ ($2000-\mathrm{kg}$) car of Test $B H-8$ moved to the right for an impact angle of 19.5°. A repeat of this test ($\mathrm{BH}-9$) with a 15 -degree approach revealed a drift to the left with an impact angle that was too low. Because these differences in impact angle were so significant in vehicle response, problems involved not only the HVOSM correlations but also those associated with the test guidance system.

The last two slope tests ($\mathrm{BH}-9$ and $\mathrm{BH}-10$) were finally simulated using the modified HVOSM program. Table 11 summarizes the results. Although underride was not predicted by either simulation, which agreed with test results, the height of the bumper at impact was considerably lower in the simulations than observed in the tests.

It became evident both from the sloping terrain simulations and test results that the bumper height at impact was very sensitive. Despite the extensive efforts to achieve satisfactory bumper height correlation between the HVOSM predictions and test results, the recalcitrant problem persisted. The difficulty was in controlling the experiments accurately enough to identify threshold conditions on sloping terrain. The trajectories of vehicles crossing sloping terrain at various speeds and angles vary considerably; and in all cases, satisfactory performance was obtained in the experiments due to (in part) the variance from the desired impact conditions. Thus, it was decided to terminate work on the analytical study and to determine critical underride/override railing heights by full-scale tests. Because of the relative costs of simulations and tests, the scope of work necessarily had to be reduced. However, the problem of satisfactory correlation was apparently unresolvable.

Table 11. Comparison of test and simulation for Tests BH-9 and BII-10.

	Test BH-9	Simulation	Test BH-10	Simulation	Simulation
		86.3		85.7	88.0
Initial Speed, fps			15	15.0	15.0
Initial Angle, deg*	15.0	85.6	85.1	85.1	87.4
Impact Speed, fps	85.7	12.6	13.6	13.6	15.6
Impact Angle, deg	12.5	21.1	25.5	21.4	23.5
Bumper Height, in	24.0	no		no	yes

* Estimated for test, actual for simulation.

IV. SUMMARY OF FULL-SCALE CRASH TESTS

A. General

Sixteen full-scale crash tests were conducted in the project using primarily $4500-1 b(2000-\mathrm{kg})$ and $1800-1 b(800-\mathrm{kg})$ sedans. One low front profile car was used to examine barrier mounting height problems with this vehicle type.

The selected barrier systems were installed and evaluated by fullscale crash test according to the procedures of NCHRP Report 230. Data were recorded by high-speed cameras and electronic transducers. Drawings of the barriers evaluated in this project are shown in voiume 2. Detailed descriptions of the tests are given in volume 2.

The purpose of these tests was to establish threshold mounting heights at $60 \mathrm{mph}(95 \mathrm{~km} / \mathrm{h}$) for a range of three angles (7, 15, 25). The 15-degree impact angle was chosen as being consistent with NCHRP Report 230 that states on page 23:
> "It is stressed that test conditions given in Tables 3 and 4 are not all-inclusive. There are other conditions that may need to be examined due to the peculiarity of the test article or unique feature of the potential installation site" ...e.g., sloping terrain."

The crash tests are briefly described in the following sections; the tests are summarized in tables 12 through 14. In these tables, an assessment is made regarding compliance with the recommended evaluation criteria of NCHRP Report 230 , table 7.

B. Critical Mounting Height Tests, Series 1

Six tests were conducted on G4(1S) guardrails installed at various heights on level terrain. The tests are summarized in table 12 and described briefly in the following paragraphs.

Table 12. Summary of critical barrier lieight tests, series 1.

	Test No. Barrler Helght, In	$\begin{aligned} & 81-1 \\ & 30 \mathrm{OH} \end{aligned}$	$\begin{aligned} & \text { 日it-2 } \\ & 22^{\prime \prime} \end{aligned}$	$\begin{gathered} 814-3 \\ 32^{\prime \prime \prime} . \end{gathered}$	$\begin{gathered} 1111-4 \\ 30 " 1 \end{gathered}$	$\begin{aligned} & \text { LHI-5 } \\ & 22^{\circ \prime \prime \prime} \end{aligned}$	$\begin{gathered} 11111-6 \\ 3201 \end{gathered}$
	Test Vehiole	1978 Dodge	1979 luadge				
	Gross Vehicle Melght, 16 Impact Speed (flim), mph	$\begin{aligned} & 4735 \\ & 61.1 \end{aligned}$	$\begin{aligned} & 4633 \\ & 59.7 \end{aligned}$	$\begin{array}{r} 4675 \\ 59.6 \end{array}$	$\begin{aligned} & 4699 \\ & 60.3 \end{aligned}$	$\begin{aligned} & 4762 \\ & 61.2 \end{aligned}$	$\begin{aligned} & 2000 \\ & 61.4 \end{aligned}$
	Impact argle, des	25.9	26.8	25.0	24.4	26.5	25.0
	Impaot Duration, seo	. 58	. 40	Rall Pocketed	. 54	. 45	Not Avall
	Manimum Deflection, in Dynamia Pormanent	$\begin{array}{r} 35.2 \\ 24.3 \end{array}$	$\begin{gathered} \text { Not avall } \\ 14.0 \end{gathered}$	Rall Fractured Mall Fractured	$\begin{aligned} & 27.6 \\ & 25.0 \end{aligned}$	$\begin{gathered} \text { Mot Avall } \\ 11.8 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.8 \end{aligned}$
	Exit angle, deg File Yaw Rate Transoucer	not avall	Vohicle Vaulted Vehicle Vaulted	Did Mot Exit Did mot Exit	>-20	$\begin{aligned} & 15.1 \\ & 12.7 \end{aligned}$	Did Not Exit Did Not Exit
	Exit Speed, mph Film Aucelerometer	$\begin{gathered} 36.5 \\ \text { Mot avall } \end{gathered}$	Vehiole Vaulted Vehicle Vaulted	$\begin{aligned} & \text { Did Mot Exit } \\ & \text { Did Mot Exit } \end{aligned}$	Mot avall Mot Avall	$\begin{array}{r} 50.0 \\ 55.0 \end{array}$	Did Not Exit Did Nut Exit
\sim	Max imum 50 ms Ave Aceel (rila/aceelerometer) Longitudinal Lateral	$-4.2 / \mathrm{mot}$ avall -5.7/Mot Avall	$\begin{aligned} & -3.5 /-6.1 \\ & -2.8 /-3.6 \end{aligned}$	$\begin{aligned} & -6.3 /-6.3 \\ & -3.2 /-6.3 \end{aligned}$	$\begin{aligned} & -2.7 /-2.9 \\ & -6.6 /-7.9 \end{aligned}$	$\begin{aligned} & -3.2 /-2.7 \\ & -2.4 / 4.2 \end{aligned}$	Hut avall/-6.7 Not Avial/4. 6
	Occupant Risk, MCIMP Report 230 (rila/acesierometer) Δy long. fps (30) Δy lat, fpa (20)	20.0/Mot Avall 12.3/mot avall	$\begin{aligned} & 14.3 / 17.1 \\ & 11.7 / 8.8 \end{aligned}$	23.6/Mot Avall 13.5/Mot Avall	Mot Avall 18.3/18.5	$\begin{aligned} & 13.4 / 8.6 \\ & 11.4 / 3.1 \end{aligned}$	Not avall/23.1 Mot Avall/-14.8
	Aldedown heceleration, $g^{\prime \prime}$ ' (acoel erometor) Longitudinal (15) Lateral (15)	$\begin{aligned} & -2.8(f 1 \mathrm{Im}) \\ & -5.7 \text { (rim) } \end{aligned}$	$\begin{aligned} & -0.5 \text { (riIm) } \\ & -0.9 \text { (rilm) } \end{aligned}$	$\begin{aligned} & -5.8 \text { (r1Im) } \\ & -3.0 \text { (rilm) } \end{aligned}$	Mot Avall -13.1	$\begin{gathered} -2.8 \\ -31.6 \end{gathered}$	$\begin{gathered} -9.6 \\ 5.7 \end{gathered}$
	MCHRP Keport 230 Evaluation Structural idequacy (A, D) Occupant ilak (E) Vemicie Trajeotory (H, I). - Beam attached to post usion - Mo reotangular maner. - 60s Enit Angle 15° - $\Delta y=15 \mathrm{mph}$	Passed Passed < 15° >15* ectangular mashe	Falled Passed Falled	Falled Passed Falled	$\begin{gathered} \text { Passed } \\ \text { Passed } \\ >15^{\circ} \\ \text { <15 } \end{gathered}$	Falled Passed Falled	Falled Passed Passed

Table 13. Summary of sloping terrain tests.

Table 14. Sumary of critical barrier height tests, series 2.

Test BH-1. The purpose of this test was to evaluate the G4(1S) guardrail (coupled) for underride with the W-beam mounted at 30 in (76 cm) above grade: The underride height for the test vehicle was 20 in (51 cm) as shown in figure 20. Impact conditions for the $4735-1 \mathrm{l}$ ($2140-\mathrm{kg}$) gross weight vehicle were $61.1 \mathrm{mph}(98.3 \mathrm{~km} / \mathrm{h})$ and 25.9°. The vehicle was redirected as snown in figure 21 , although snagging occurred due to wheel contact with posts. The maximum dynamic deflection was 35.2 in (89.4 cm); vehicle and barrier damage are shown in figure 20.

Test BH-2. The purpose of this test was to evaluate the G4(1S) guardrail system for override with the top of the barrier at 22 in (56 cm) above grade as shown in figure 22. The critical override height for the test vehicle was 20 in (51 cm). Impact conditions for the 4633-1b ($2101-\mathrm{kg}$) vehicle were $59.7 \mathrm{mph}(96.0 \mathrm{~km} / \mathrm{h}$) and a 26.8 -degree angle. As shown in figure 23, the test vehicle bumper immediately rode up over the W-beam, causing the vehicle to ramp. The vehicle remained in contact with the rail for $17.5 \mathrm{ft}^{t}(5.3 \mathrm{~m})$ before vaulting over the system. Damage to the barrier and vehicle are shown in figure 22.

Test BH-3. The purpose of this test was to evaluate G4(1S) system mounted at $32-i n(31-\mathrm{cm}$) for underride as shown in figure 24 . Test conditions included a $4675-1 \mathrm{~b}$ ($2120-\mathrm{kg}$) vehicle with a 20 -in ($51-\mathrm{cm}$) underride height impacting at $59.6 \mathrm{mph}(95.9 \mathrm{~km} / \mathrm{h})$ and angle of 25.0°. As shown in figure 25 , the test vehicle bumper immediately rode under the rail and snagged on the next downstream post. The left front tire/wheel assembly also snagged on this post, causing the post to detach from the beam. The next three posts also detached from the W-beam and pulled from the ground during impact. The vehicle continued without redirection until pocketing occurred at the fourth post contacted, causing the beam to separate at the next downstream post location. The beam had deflected $3.3 \mathrm{ft}^{\mathrm{ft}}(1.0 \mathrm{~m}$) before separation occurred. The downstream section of the separated rail impaled the vehicle in the grille area and into the engine compartment; no passenger compartment intrusion was noted. The vehicle stopped at the

Figure 20. Before and arter Fes: phozozraphs, Test 3H-'.

Eigure 21．Secuerここà phoこographs，Test BH－：．

$\therefore \because$

Fizure 23. Sezuentizi phoこosrapts, Tests 3H-2.

r

Eigure 24. Before ard arter test piotographs, Test BH-3.

ミigure 25. Secuerこiz: onozojnagrs, Eest 3H-3.
sixth post contacted. Damage to the vehicle and barrier is shown in figure 24.

Test $\mathrm{BH}-4$. The purpose of this test was to evaluate the G4(IS) guardrail system for underride with the beam mounted at 30 in (76 cm) high as shown in figure 26. Test conditions included a 4699-10 (213i-kg) vehicle with a $20-i n(51-c m)$ underride height impacting at 60.3 mph ($97.1 \mathrm{~km} / \mathrm{h}$) and angle of 24.4°. As shown in figure 27 , the vehicle remained in contact with the barrier for $25 \mathrm{ft}(7.6 \mathrm{~m})$ before redirection at a 17.3-degree angle. No significant snagging of the rail or line posts was noted. Damage after the test is shown in figure 26.

Test BH-5. The purpose of this test was to evaluate the G4 (1S) guardrail system for override with the beam mounted at 22 in (56 cm) above grade as shown in figure 28 . Unlike Test $\mathrm{BH}-2$ which included the use of rectangular washers under the beam/post attachment bolt head, this system used no washers and was considered "uncoupled." Test conditions included a 4762-1b (2160-kg) vehicle with a 20 in (51 cm) override dimension impacting at $61.2 \mathrm{mph}(98.5 \mathrm{~km} / \mathrm{h})$ and at a 26.5 -degree angle. As shown in figure 29, the vehicle bumper immediately rode up over the W-beam which resulted in the vehicle ramping over the barrier after $18 \mathrm{ft}(5.5 \mathrm{~m})$ of contact. Photographs after the test are shown in figure 28.

Test $\mathrm{BH}-6$. The purpose of this test was to determine if the $32-i n$ (81.3-cm) high $G 4(1 S)$ system was also a critical underride height for the 1800-1b (800-kg) car at $60 \mathrm{mph}(95 \mathrm{~km} / \mathrm{h})$ and 25 -degree angle. Since the 1800-1b ($800-\mathrm{kg}$) test car had the same 20-in (51-cm) underride height as the $4500-1 b(2000-\mathrm{kg})$ sedan used in previous tests, the test would determine if a higher height could be tolerated for the smaller car. Figure 30 contains photographs before the test. The 1835-10 (832-kg) vehicle impacted at $61.4 \mathrm{mph}(98.8 \mathrm{~km} / \mathrm{h})$ and an angle of 25°. As shown in figure 31 , the vehicle was redirected by the barrier until significant wheel snagging on the posts caused the vehicle to yaw and spin out from the barrier. Photographs after test are shown in figure 30.

Eigure 26. BeEore and aEter zest photographs, Test BH-4.

Eigure 27. Sequer:iai pho:ographs, Test 3H-4.

Eigure 23. Before ard after test photograprs. Test $3 H-5$.

Figure 29. Sequenこiai protographs, Eest 3H-5.

[^2]

```
C. Sioping Terrain Teses
```

Four tests were conducted on the slopirg terrain geometry described in figure 32. A great arount of difficulty was realized in the conduct of these testa. Eor the Eirst inree zests, the guidance cable used to szeer
 15 -degree approach to zee jarrier, tie $=$ vest venicies would travel aimos: 100 ft on the sloping Eerrain without steering control. Another factor \vdots s
 steering bracket is sheared off. For level terrain tests, the "break-o: "" point is generally less than a car length which enhances the precision of the impact angle. The combination of bracket break-off steering irput ard traversa: of slopirg terrain for approximately 100 ft caused the first three test conditions to vary widely.

For the Fourtin test, the steering cable termination point was moved u to the erest of the superelevated slope; thus for a constant 15 -degree angle, the freewheeilirg vehicle would traverse only $41.5 \mathrm{ft}(12.7 \mathrm{~m})$ before impacting the barrier. Steering inputs were incorporated into the HVOSM simulations in an attempt to reconcile the difference between actual impact conditions and those predicted in the simulations. Due to the combination of steering input and sloping terrain traversal, it was difficult to reach closure on this problem.

For reasons previously described in chapter III and this section, testing on the sloping terrain using the cable guidance system presented many problems. Remote steering was contemplated, but this method has its own sources of possible error also. It was decided that the problems were real and solutions beyond the scope of the project. The four tests are briefly described.

Test $3 H-7$. This test evaluated the G4 (1S) guardrail when installed at the hinge point (see figures 32 and 33). The top of rail was set at 32 in (81 cm) for the $20-i n(5 i-\mathrm{cm})$ hign underride height of the $1950-10$ ($884-\mathrm{kg}$)

SECTION AA
$-2 a p$
76

Figure 32. Barrier construction details, Test BH-7.

Honda. The vehicle impacted the barrier $\mathrm{a}^{2} \equiv 3.3 \mathrm{mph}(94 \mathrm{~km} / \mathrm{h})$ and ij.Edegree angle. Immediately on impact, the veticle bumper rode under the rail and subsequently contacted two posts before redirection as shown in figure 34. No wheel or bumper snagging occurred. Photographs be:ore ard after the test are shown in figure 35 .

Test $8 \mathrm{H}-8$. The purpose of this underride test was to evaluate the same installation as $\mathrm{BH}-7$ for a $4500-\mathrm{ib}$ (2000-kg) vehicle impacting at $60 \mathrm{mph}(95 \mathrm{~km} / \mathrm{h})$ and 15°. Sue to the trajectory of the vehicle after breaking away from the guide cable the actual impact conditions were $59.5 \mathrm{mph}(95.8 \mathrm{~km} / \mathrm{h})$ and 19.5 -degree impact angle. The higher than planred impact angle could not be explained after much investigation. As shown in figure 36 , the vehicle remained in contact with the barrier for 28.9 ft $(8.8 \mathrm{~m})$ before smooth redirection at a 4.2 -degree exit angle. The front bumper did not underrice the beam and although tire contact with posts was noted, no snagging occurred. Figure 37 contains photographs before and after the test.

Test $\mathrm{BH}-9$. This test was considered a repeat of the previous test. In this test, the vehicle drifted away from the barrier as had been anticipated in previous tests and had occurred with the $1800-1 \mathrm{~b}(800-\mathrm{kg})$ car in Test $\mathrm{BH}-7$. However, based on a drift toward the barrier in the 4500-1b (2000-kg) car test ($3 \mathrm{H}-8$), the cable termination had been set expecting this same phenomenon. Instead, the vehicle drifted away from the barrier and actual impact angle was 12.5° as shown in figure 38 . The vehicle impacted at $58.4 \operatorname{mph}(85.7 \mathrm{fps})$, the bumper underrode the beam, and wheel/post contact occurred, but no snagging was noted. The lack of snagging was attributed to the small deflection of the barrier system. Photographs before and after the test are shown in figure 39.

Test $\mathrm{BH}-10$. The guide cable termination point was moved up the $10: 1$ slope for this repeat of the previous test. The actual impact angle of 13.6° was still below the 15 -degree angle. As shown in figure 40 , the vehicle impacted at $58 \mathrm{mph}(93 \mathrm{~km} / \mathrm{h})$ and remained in contact with the

Figure 34. Sequartia phozographs, Tes: 3K-7.

Eigure 36. Secuentia: photograpins. Test Bit-3.

Figure 37. Before and atter cest photographs, Tese 3H-3.

Eigure 38. Sequeñ:a~ Frotographs. Test 34-7.

Eigure 39. Before and atter eest protognaphs, Test zu-g.

Figure 40. Sequentiai protograprs, Test $34-10$.

```
barrier for 31.0 Et (9.4 m) before smooth redirection at an exit angie of
```

5.7° occurred. The front bumper did not underride the barrier and wheel/ post contact was not sufficient to cause snagging. Fhotographs after the test are shown in figure 41.
2. Critical Mounting Height Tests, Series 2

After the sloping terrain tests were dismissed due to test condition difficulties, another series of tests was conducted to further determine critical mounting heights. It had been observed on the sloping terrain tests that vehicle bumper underride had occurred without severe consequences due to the relatively low deflection values for the 15 -degree angle impacts. Accordingly, this test series focused on impact angle as a^{3} variable in the critical barrier neight determination. The tests were conducted on level terrain with angles of impact from 7 to 20°.

In addition, a low profile car was used to evaluate the Gi cable guardrail system.

Test BH-11. The purpose of this test was to establish the G4(1S) system critical mounting height for underride for $60-\mathrm{mph}(95-\mathrm{km} / \mathrm{h})$, 7.5degree angle impacts. The beam was mounted at $33 \mathrm{in}(84 \mathrm{~cm})$ and critical bumper height of 20 in (51 cm) as shown in figure 42. The 4715-1b ($2138-\mathrm{kg}$) vehicle impacted the barrier at $61.0 \mathrm{mph}(98.2 \mathrm{~km} / \mathrm{h}$) and an angie of 6.8°. As shown in figure 43 , the vehicle was smoothly redirected with no bumper snagging although bumper underride occurred. Insignificant contact of the rear tire with the traffic face of one post was the oniy post/wheel contact noted. Photographs after the test are shown in figure 42.

Test BH-12. The purpose of this test was to evaluate the same barrier installation as $\mathrm{BH}-:$ 'see figure 44) with an impact angle of 15°. The 4715-1b (2138-kg) $v=1$ e impacted at $61.2 \mathrm{mph}(98.5 \mathrm{~km} / \mathrm{h})$ and a $14.5-$ degree argle. As s. $4 n$ in figure 45 , the right front fender deformed

Eigure 42. Jefore and azter tés= phozograprs, Ees: 3H- ${ }^{+1 .}$

Figure 43. Sequertial phovograyns, Pest 3H-:!.

Eigure 44．Before ard aミこer＂こest protographs．Tes＝ミH－！2．
90

Eigure 45. Sequential pnotozraprs. Tesえ 3:i-!?.
inward, ailowing the right front tire and wheel to ride under and benind the W-beam. Although the front bumper underrode the beam, snagging four posts, sufficient vehicle velocity was maintained for normal redirection. The venicle remained in contact for $31.5 \mathrm{ft}(9.6 \mathrm{~m})$ before redirection at a 4.5-degree exit argie. Photographs after the test are shown in figure 44.

Test $3 H-13$. The purpose of this test was to evaluate the $G 4(1 S)$ guardrail mounted at 33 in (83.8 cm) righ with an impact angle of 20° as shown in iigure 46 . As shown in figure 47 , the $4650-1 b$ (2104-kg) venicle impacted the barrier at $59.6 \mathrm{mph}(95 . \hat{c} \mathrm{~km} / \mathrm{h})$ and a 19.5 -degree angle. Immediately after impact the front bumper underrode the W-beam, allowing the right front wheel to engage the next six posts. Although the vehicle began to redirect, impact with the posts caused the rear of the vehicle to begin to yaw away from the barrier. The vehicle continued this "spin out" but impact with the barrier further downstream caused redirection of the vehicle parallel to the barrier. The initial barrier contact length was $37 \mathrm{ft}(11 \mathrm{~m})$ with a maximum deflection of $3.5 \mathrm{ft}(1.1 \mathrm{~m})$. The secondary impact was 84 ft (26 m) downstream of initial impact and continued 9.5 ft $(2.9 \mathrm{~m})$ until the barrier ended. Photographs after test are shown in figure 46 .

Test $\mathrm{BH}-14$. The purpose of this test was to evaluate the $\mathrm{G} 4(1 \mathrm{~S})$ guardrail system with the top of the beam mounted at 18 in (0.5 m) as shown in figure 48 . The $4670-1 b(2118-\mathrm{kg})$ vehicle impacted the barrier at $61.7 \mathrm{mph}(99.3 \mathrm{~km} / \mathrm{h})$ and 7.6 -degree angie as shown in figure 49 . The front bumper rode over the W-beam at impact and the right front tire engaged the rail, causing redirection to occur. The vehicle remained in contact with the barrier for $20.3 \mathrm{ft}(6.2 \mathrm{~m})$ before redirection at a 1.4 -degree exit angle occurred. Photographs after test are shown in figure 48.

Test BH-15. The purpose of this test was to establish critical mounting height for the $\mathrm{CH}(1 \mathrm{~S})$ system for an angle of impact of 15° at $60 \mathrm{mph}(95 \mathrm{~km} / \mathrm{h})$. Photographs before test are shown in figure 50 . The beam ras instailed $\exists t 22$ in (56 cm) above Level grade. The 4670-1b

Eigure 49. Seclential provograpas, Test Biti4.

Eizure j0．Zefore and ミここer こest procosreyrs．こesi 3i－ij．
(2118-kg) venicie impacted at $62.7 \mathrm{mph}(: 00.9 \mathrm{~km} / \mathrm{h})$ and a 13.6 -cegree angie. As shown in figure 51, the vehicle became airborne and reached a maximum roll angle of 66° before recontacting the ground on the left side. Jenicle and barrier damage are shown in figure 49.

Test $3 H-16$. The purpose of this test was to examine the performarce of a low front profile car with a cable guardrail system. The most commonly specified cable guardrail in the country is the $G 1$ cable guardrail shown in the AASHTO Barrier Guide ${ }^{(9)}$. This barrier had been extensiveiy tested during development ${ }^{(10)}$ and more recently tested by New York ("1) and Southwest Research. Institute for NCHRP(12). The Gl cable system shown in the Barrier Guide has the top cable at 30 in (76 cm) aoove grade. Recently, New York (see ref. 1) has contemplated changing the height :o 27 in (59 cm). Tests conducted recently by New York and SWRI have indicated this is more desirable. A test conducted at SwRI resulted in a 4300-1b (1950-kg) van redirecting after a $60-\mathrm{mph}(95-\mathrm{km} / \mathrm{h})$, 25-degree angle impact. (11) Thus, it had been demonstrated that 27 in (69 cm) was sufficiently high to redirect a higher c.g. vehicle.

The top cable was set at 27 in (69 cm) for the test as shown in figure 52. The test vehicle was selected based on a survey described in figure 6. The 1974 Datsun 2602 weighing $2740 \mathrm{lb}(1243 \mathrm{~kg}$) impacted the barrier at $59.6 \mathrm{mph}(95.8 \mathrm{~km} / \mathrm{h})$ and angle of 24.8°. As shown in figure 53 . the top cable rode up over the hood but was contained by the A pillar arc : pillar without any passenger compartment intrusion. The tivo lower cabies remained captured by the deformed sheet metal aiong the left side of the car. Vehicle contact with subsequent posts caused the rear of the vehicie to begin yawing away from the barrier. Elastic spring of the cables pusined the vehicle laterally away from the system. The venicle lost contact with the barrier after $64 \mathrm{ft}(20 \mathrm{~m})$ and recontacted the barrier 7 posts downstream from the initial contact. This second contact caused the vehicie $=0$ spin out and begin traveling backward, coming to rest as shown in figure 52.

Figure 52. Berore and afzer こest protographs, Tesz ミitut.

v. CONCLUSIONS AND DESIGN GUTDELINES

A. Findings

As a result of the full-scale crash tests and computer simulations conducted in this study, some important findings were revealed that affect the performance of barriers with varying railing heights. These findings were as follows:

- Bumper heights were shown to be very sensitive to the impact conditions. Though the computer simulations indicated underride for the nominal impact conditions, the small deviations in actual test impact conditions affected not only the bumper heights but also the barrier response. When the actual test conditions were duplicated with the simulation, the change in barrier response (from underride to no underride) followed. However, the persistent problem of discrepancies between bumper heights of tests and sloping terrain simulations could not be resolved; this is principally attributed to the trajectory of the car after traversing two slopes from 40 to 100 ft (12 to 30 m) after release from the guide cable. The simulation model accurately predicts bumper height if known trajectories are input.
- Bumper heights alone are not sufficient to predict underride. Though the bumper did underride the railing in Test BH-9 (see chapter IV), the barrier defiection was not sufficient for the bumper to snag the posts and pocket the vehicle. In fact, the slope tests $\mathrm{BH}-7$ through $\mathrm{BH}-10$ showed that underride was not likely to be a problem for impacts of less than 20° with reasonable barrier heights. This was validated with subsequent flat and level tests.
- Within the range of standard impact conditions, small car underride was not shown to be critical because of insufficient barrier deflection to permit venicle contact with the posts. This is based on tre fact that for a given speed and angle, the large car is more critical in
both cases because of the larger deformation of the barrier which is crucial for both underride and override. The oumper heights are basically the same.

```
- The finding that barrier deflection, in addition to the relavive railing/bumper heights, affected uncerride implied that it also afrected override. That is, the bumper might override the railing without sufilicient lean of the barrier to launch the vehicle. On considering the continued vehicle wheel and undercarriage contact with the rail, this was not as likely as the firmer vehicle body contact in underride situations.
```

- Uncoupling the railing from the posts by eliminating the restraining washers did not significantly affect the barrier response in underride or override conditions.
- On slope tests BH-7 through BH-10, it was found to be practically impossible to achieve accurate impact conditions because of left or right vehicle drift after release from the guidance system. Thus, threshoid underride/override barrier heights were established from flat and level tests. Table 15 shows the critical railing heights for the common corrugated railing systems (W-beam or thrie beam). Thresholds for other railing types were not established.
- Based on computer simulations, the effects of suspension variations were not judged to be critical. Thus, the bumper trajectories predicted by the computer should be accurate for a wide range of suspension values.
- Based on computer simulations, the effects on steering/braking on level terrain are not significant: however, steering can affect the trajectory of vehicles traversing slopes and result in changes in the bumper height at impact. The infinite number of possible steering input variations did not permit consideration of this variable in the project.

Table 15. Threshold railing heights.

Condition
Angle of Impact (degrees)* $\begin{array}{lll}7.5 & 15 & 25\end{array}$

Underride $34(+2)^{* *} \quad 34(+2) \quad 32(+0)$
Override $18(-2) \quad 22(+2)(+2)$

* All tests were with nominal 4500-lb vehicles at 60 mph . Pickups were not included in this study. Smaller cars are not included due to the third conclusion on page 102.
** Numbers in parentheses show relative railing heights with respect to the $20-$ inch underride/override heights of the test vehicles. These numbers are to the bottom of the railing for underride and to the top of the railing for override.
- Tre single test of the low profile car indicated satisiactory performance with the Gi cable system mounted at 27 in (70 cm) high. הecent experience, with a test by New York indicated totaliy unsatisfactory performance with the $G 1$ system mounted at 30 in (75 cm). The test vehicle (a mid-70 Q :ymouth Eury 2 -door hardtop) suffered severe passerger compar:ment damage due to cables severing the A and C piliars. (10) in an NCt?? project at SWRI, a 4300-ib (1950-kg) van was successflly redirected $a=$ 60 mph and 25 -degree angle with the top cable at $27 \mathrm{in}(70 \mathrm{~cm})$. Thus, it would appear that the Gl cable system mounting height as shown in the AASHTO Barrier Guide should be lowered to 27 in (70 cm).
- The 1977 AASHTO Barrier Guide ${ }^{(9)}$ sets top of railing height for W-beam systems G4(1S) and G4(1\&2W) at 27 inches (68.6 cm). For the $G 9$ thrie beam system the top of rail height is set at 32 inches (81.3 cm). Since the findings of this study were based on passenger cars, it would seem that a beam mounting height as high as possible would achieve the most favorable results in the field. Since most of the smaller cars are represented by the Honda, the higher beam mounting height would make the barriers more responsive to vehicles weighing more and with higher c.g.s than the $4500-16$ ($2025-\mathrm{kg}$) vehicle. Thus, for the design bumper height of 18 in (45.7 cm), an ideal mounting height would be $30 \mathrm{in} \mathrm{(} 76.2 \mathrm{~cm}$) for the W-beam and $38 \mathrm{in}(96.5 \mathrm{~cm})$ for the thrie beam as illustrated in Eigure 54. Allowing for some factor of safety (for uneven terrain, braking, etc.), tine W-beam mounting height of 27 in (68.6 cm) could remain a good choice, but the thrie beam mounting height could be raised from 32 to 35 in (81.3 to $88.9 \mathrm{~cm})$ using the same rationale. Using a similar rationale, a user agency should seriously consider upgrading where an installation height is below $20+3$ or 23 in (58.4 cm). The selection of the 3 in (7.5 cm) value is somewhat arbitrary and not based on any real precision.

The difficulty in achieving desired test conditions for barriers mounted on sloping terrain prevented closure on certain questions regarding the effects of the vehicle attitude (i.e., pitch and trajectory direction) before and during the impact events. Using conventional steering

(b) DESIGN BUMPER CONSIDERATIONS

Figure 54. Barrier height considerations.
techniques (i.e., zuide cable), control of the location and angle of impacz cannot be satisfactorily controlled for determining threshold values. Some form of remote steering or fixed guidance channel might be more accurate although the former could have its own set of problems. It is recommerded that if significant questions arise regarding the findings of this project in this regard that improved steering techniques on sioping terrain be investigated and crash tests conducted accordingly.

B. Design Guidelines

The threshold underride/override railing heights as established by full-scale tests are shown above in table 15. This information, along with the HVOSM data supplied by the Texas Transportation Institute (TTI) (see chapter II), was used to develop design guidelines. The manner in which these guidelines were developed and explanation of their use follow.

As indicated in chapter II (table 2), the TTI study included 26 roadway/roadside geometric parameters. For each of these roadway/roadside cross sections, HVOSM runs were conducted for two vehicle sizes [1800 lb (800 kg) and $4500 \mathrm{lb}(2000 \mathrm{~kg})$] and three impact angles ($7.5,15$, and 25°) all at a single speed of $60 \mathrm{mph}(95 \mathrm{~km} / \mathrm{h})$. This produced a total of 26×2 $\times 3=156$ HVOSM runs. Output from each run included the bumper mid-height as the vehicle traveled across the section. A computer program was first prepared for graphical presentation of this output data.

The TTI data represented bumper mid-heights of 17.2 in (43.7 cm) for the $1800-1 \mathrm{~b}(800-\mathrm{kg})$ car and $17.5 \mathrm{in}(44.5 \mathrm{~cm})$ for the $4500-1 \mathrm{~b}$ (2000-kg) vehicle. The first modification was to add $0.8 \mathrm{in} \mathrm{(2.0} \mathrm{cm)} \mathrm{and} 0.5$ in (1.3 cm), respectively, to reach the single underride/ override height of 18.0 in (45 cm) for the design vehicle (see figures 4 and 5 of chapter II). Further modifications were to adjust the heights by the relative distances for underride/override as shown in table 15 above. Table 16 shows the 12 final adjustments of the TTI data for the bottom of the railing for underride and the top of the railing for override.

Table 16. Adjustments of TTI data for underride/override.

	Impact Angle (degrees)		
Vehicle	7.5	15	25
Underride (adjustments to bottom of railing)			
1800-1b	+2.8	+2.8	+0.8
4500-1b	+2.5	+2.5	+0.5
Override (adjustments to top of railing)			
1800-1b	-1.2	+2.8	+2.8
4500-1b	-1.5	+2.5	+2.5

Abstract

The $i 2$ adjustments shown in table 16 were plotted on each of the 26 roadway/roadside cross sections. Figure 55 shows an example of the resulting plots. By shading in the area from the lowermost underride curve (bottom of railing) to the uppermost override curve (top of railing), the required range of railing width along the roadside couid be estaolished.

The 25 roadway/roadside conditions are repeated in table 17 . Numbers in parentheses refer to the corresponding numbers of the figures that follow.

Figure 56 illustrates how the curves of figures 57 through 82 can be used. By preparing an overlay scale corresponding to the $Z-a x i s$ and placing it at the guardrail position of interest, the required width and height of the railing can be determined. Note that if the band width exceeds the $12-\mathrm{in}(30-\mathrm{cm})$ width of the W-beam, either a $20-\mathrm{in}$ ($50-\mathrm{cm}$) wide thrie beam or an added rub rail should be used. If the band width is less than the railing width, tolerances in railing height can be established. That is, the railing can be moved up or down as long as the railing width covers the band. An agency could opt for a tolerance to account for bumper height variations (for any reason) by reducing the effective band width of the beams.

Note that these barrier limit curves are only for corrugated railings (W-beam or thrie beam). Underride/override thresholds were not established in the study for other types of railings. Also, the underride/override heights shown were established from flat and level full-scale tests. The limits might be changed somewhat by downward or upward trajectories of the vehicles at the guardrail points of interest. These effects could not be established because of the problems associated with the modified HVOSM code in simulations and vehicle drift in full-scale slope tests. However, with the relatively small deflections that would be expected with the C4 or G9 guardrail systems for most impacts, these effects are not considered to be significant.

Figure 55. Example of underride/override plots formini and standard vehicles at $7.5^{\circ}, 15^{\circ}$, and 25° to determine barrier height limit envelope.

Table 17. Roadway/roadside zeometric parame:ers.

a_{t}	+48	-20		-10	
a_{s}	+20	+20	-20	+20	-10
	+4 $(57) *$	+4 (63)	+4 (69)	+4 (73)	+4 (79)
a_{e}	+6 (58) (59)	+6 (64)	+6 (70)	+6 (74)	+6 (80)
	+10 (60)	+8 (71) (66)	+8 (75)	+8 (81)	
	-8 (61)	-8 (67)	+10 (76)	+10 (82)	
	-4 (62)	-4 (68)	-8 (77)		

* Numbers in parentheses refer to corresponding figure numbers.

Figure 56. Barrier height limit envelope (G4(1S) system, $a_{t}=-10, a_{s}=20, a_{e}=4$).

Lateral Distance from Centerline of Roadway

Figure 57. Bartier height limit envelope (G4 (lS) system, $A T=48, A S=20, A E=4)$.

Figure 58. Barrier limits ($G 4(1 S$) system, $A T=48, A S=20, A E=6)$.

Lateral Distance from Centerline of Roadway

Figure 59. Barrier limits (G4(1S) system, $A^{\prime} f=48, A S=20, A E=8$).

Figure 60. Barrier limits (G4(1S) system, $A T=48, A S=20, A E=10$).

Figure 61. Barrier limits ($\mathrm{C} 4(1 \mathrm{~S}$) system, $\mathrm{AT}=48, \mathrm{AS}=20, \mathrm{AE}=-8$).

Figure 62. Barrier limits (G4(1S) system, $A T=48, A S=20, A E=-4)$.

Figure 63. Barrier limits (G4(1S) system, $\operatorname{AT}=48, A S=20, A E=4)$.

Figure 64. Barrier limits (G4(1S) system, $A T=-20, A S=20, A E=6)$.

Lateral Distance from Centerline of Roadway
Figure 65. Barrier 1 imits ($\mathrm{C} 4(1 \mathrm{~S}$) system, $\mathrm{AT}=-20, \mathrm{AS}=20, \mathrm{AE}=8$).

Lateral Distance from Centerline of Koadway
Figure 67. Barrier limits (C4(1S) system, $A T=-20, A S=20, A E=-8$).

Lateral Distance from Centerline of Roadway

Figure 68. Barrier limits (G4(1S) system, $A T=-20, A S=20, A E=-4)$.

Figure 70. Barrier limits (G4(1S) system, AT $=-20, A S=-20, A E=6)$.

Figure 71. Barrier limits ($\mathrm{C4}(1 \mathrm{~S}$) system, $A T=-20, \mathrm{AS}=-20, \mathrm{AE}=8$).

Lateral Distance from Centerline of Roadway

Figure 72. Barrier limits (G4(1S) system, $A T=-20, A S=-20, A E=10)$.

Lateral Distance from Centerline of Koadway

Figure 73. Barrier limits (G4(1S) system, $\operatorname{AT}=-10, A S=20, A E=4)$.

Lateral Distance from Centerline of Roadway

Figure 74. Barrier limits ($\mathrm{G} 4(1 \mathrm{~S}$) system, $A T=-10, \mathrm{AS}=20, \mathrm{AE}=6$).

Lateral bistance from centerline of Roadway

Figure 75. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=8)$.

Lateral Distance from Centerline of Roadway

Figure 76. Barrier limits (G4(1S) system, $A T=-10, A S=20, A E=10)$.

Lateral Distance from Centerline of Roadway
Figure 77. Barrier Limits ($\mathrm{G} 4(1 \mathrm{~S}$) system, $\mathrm{AT}=-10, \mathrm{AS}=20, \mathrm{AE}=-8$).

Lateral Distance from Centerline of Koadway
Figure 78. Barrier limits ($\mathrm{CH}(1 \mathrm{~S}$) system, $\mathrm{AT}=-10, \mathrm{AS}=20, \mathrm{AE}=-4$).

Figure 80. Barrier limits (G4(1S) system, $A T=-10, A S=-10, A E=6)$.

Lateral Distance from Centerline of Roadway

Figure 81. Barrier limits (G4(1S) system, $A T=-10, A S=-10, A E=8)$.

Figure 82. Barrier limits (G4(1S) system, $A T=-10, A S=-10, A E=10)$.

REEERENCES

1. Hargroves, B. T. and Tyler, J. S., "Identification, Analysis, and Remedial Treatment of Low Guardrail in Virginia," Virginia Highway and Iransportation Research Council Report No. VHTRC 82-R15, September 1981.
2. Bryden, J. S., "Development of Proposed Height Standards and Tolerances for Light-Post Traffic Barriers," Transportation Researon Record 970, 1984.
3. Ross, H. E., Jr. and Sicking, D. L., "Guidelines for Placement of Longitudinal Traffic Barriers on Roadside Slopes," Contract No. DOT-FH-11-9343, TTI Research Report 3659-1, December 1982.
4. Ross, H. E., Jr. et al, "Tests of Longitudinal Barriers on Siopes," Contract No. DOT-FH-11-9343, TTI Research Report 3659-2, April 1979.
5. Segal, David J., "Highway-Vehicle-Object Simulation Model - '976 Users Manual," Report No. FHWA-RD-76-162, February 1976.
6. Bruce, R. W. et al, "Guardrail/Vehicle Dynamic Interaction," GUARD Final Report, Report FHWA-RD-77-29, March 1976.
7. Chiapetta, R., "Modeling the Interaction of Heavy Vehicle with Protective Barriers, unpublished FHWA report, FHWA Contract No. DOT-FH-11-8519.
8. Powell, G. H., "BARRIER VII: A Computer Program for Evaluation of Automobile Barrier Systems," Report No. FHWA-RD-73-51, April 1971.
9. "A Guide for Selecting, Locating, and Designing Traffic Barriers," AASHTO, 1977.
10. New York DOT Research Project 102-9, "Breakaway Cable Terminal for Cable Guardrail," (in progress).
11. "Performance of Longitudinal Traffic Barriers," NCHRP Project 22-4 (in progress at Southwest Research Institute).

FEDERALLY COORDINATED PROGRAM OF HIGHWAY RESEARCH AND DEVELOPMENT (FCP)

The Offices of Research and Development of the Federal Highway Administration are responsible for a broad program of research with resources including its own staff, contract programs, and a Federal-Aid program which is conducted by or through the State highway departments and which also finances the National Cooperative Highway Research Program managed by the Transportation Research Board. The Federally Coordinated Program of Highway Research and Development (FCP) is a carefully selected group of projects aimed at urgent, national problems, which concentrates these resources on these problems to obtain timely solutions. Virtually all of the available funds and staff resources are a part of the FCP, together with as much of the Federal-aid research funds of the States and the NCHRP resources as the States agree to devote these projects.*

FCP Category Descriptions

1. Improved Highway Design and Operation

 for SafetySafety R\&D addresses problems connected with the responsibilities of the Federal Highway Administration under the Highway Safety Act and includes investigation of appropriate design standards, roadside hardware, signing, and physical and scientific data for the formulation of improved safety regulations.
2. Reduction of Traffic Conseation and lmproved Operational Efficiency
Traffic R\&D is concerned with increasing the operational efficiency of existing highways by advancing technology, by improving designs for existing as well as new facilities, and by keeping the demand-capacity relationship in better balance through traffic management techniques such as bus and carpool preferential treatment, motorist information, and rerouting of traffic.

[^3]3. Environmental Considerations in Highway Design, Location, Construction and Operation
Environmental R\&D is directed toward identifying and evaluating Highway elements which affect the quality of the human environment. The ultimate goals are reduction of adverse highway and traffic impacts, and protection and enhancement of the environment.
4. Improved Materials Utilization and Durability
Materials R\&D is concerned with expanding the knowledge of materials properties and technology to fully utilize available naturally occurring materials, to develop extender or substitute materials for materials in short supply, and to devise procedures for converting industrial and other wastes into useful highway products. These activities are all directed toward the common goals of lowering the cost of highway construction and extending the period of mainteriance-free operation.
5. Improved Design to Reduce Costs, Extend Life Expectancy, and Insure Structural Safety
Structural R\&D is concerned with furthering the latest technological advances in structural designs, fabrication processes, and construction techniques, to provide safe, efficient highways at reasonable cost.
6. Prototype Development and Implementation of Research
This category is concerned with developing and transferring research and technology into practice, or, as it has been commonly identified, "technology transfer."
7. Improved Technology for Highway Maintenance
Maintenance R\&D objectives include the development and application of new technology to improve management, to augment the utilization of resources, and to increase operational efficiency and safety in the maintenance of highway facilities.

[^0]: Form DOT F 1700.7 (1-s9)

[^1]: - SI is the symbiot for the Iniernational Syotom of Measurements

[^2]: Esgure uU．Be：ore and aごこer test photographs，Test BH－z．

[^3]:
 (Oroer Mo. PB 24057, price SAS podquid). Single copine of the introductory volume are obtamebte without chartik from Progre Amalyin (HRD-3. Offices of lemearch and Developmench Federel Hishway Admianorarion. Weringini D.C. 20099.

