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I. INTRODUCTION AND RESEARCH APPROACH

a. Statement of the Problem

Prior to the initiation of this and similar other projects, roadside
barriers had been tested on flat and level terrain in order te¢ permit
relative assessments of their safety. On subsequent real world installa-
tions, the barriers were sometimes installed on slopes or at railing
heights differing from the system designs. Over a period of time, the
barrier heights were further changed by site variations caused by
resurfacing, settlement, ercsion, soil and grass buildup adjacent to the
barriers, ete. Thus, a need existed to determine the degree to which
barrier performance was degraded by these railing height variationms.

The performance of guardrails had been shown in numerous full-scale
tests to be sensitive to minor changes in installation details. The
performance both on level terrain and oﬁ side slopes might be improved by
making such design changes as (a) removing the washers from the button head
bolts and (b) increasing the size or changing the geometry of the block-
outs, Several States had developed adjustable blockouts for raising or
lowering W-beam rails. Evaluations were needed to verify the strength and

performance of such changes.

The three problem areas of interest’in this Study are illustrated in
figure 1. View (a) shows a guardrail that is on flat and level terrain but
is at a height that is either lower or higher than the design standard.
View (b) shows a system on a slope. Finally, view (c) illustrates systems
Wwith coupled rails, uncoupled rails with standard blockout, and uncoupled
rails with variable blockouts.

B. Objectives and Scope

As delineated in the Statement of Work, the objectives of this study
were (1) to determine the degree to which barrier performance is degraded



 §
{(a) Guardrails with Non-
Standard Height

(b) Guardrails on Slopes

Rectangular
Washer

Coupled Beam Uncoupled Beanm Uncoupled Beam

No Washer No Washer

w/Standard Bloekout w/Variable Blockout (Ref. 1)

{(c) Systems with Various Couplings

VEHICLE PROBELEM AREAS (ALL CASES):
l. Wheel Snagging
2. Vaulting
3. Rollover

Figure 1. Study areas.
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by rail mounting height variations such as initial height differing from
design standards, resurfacing, installations on slopes, soil and turf
buildup, and (2) to improve the performance of guardrails on level terrain

and on side slopes.
The stated scope of work was as follows:

This requirement shall consist of using computer simulation and
other aznalytieal tools in combination with full-scale tests with
passenger cars, vans, and pickup trucks t{o assess the perfor-
mance of various traffic barriers on irregular roadsides and on
slopes, Static tests and pendulum tests will be conducted on
barrier components. Computer simulation and other analytical
methods will be used to assess modified barrier designs before
detailed drawings are prepared and the barriers are evaluated

through full-scale tests.

The emphasis in this project was on W-beam guardrail systems which are
the most commonly specified systems in the country. Findings from the We
beam investigations regarding barrier underride/override are alse con-
sidered to be azppropriate for thrie beam systems due to the geometrical
similarity between the two beam elements.



II. REVIEW OF LITERATURE

a. Available Literature

A manual review of on-hand documentation and computer on-line searches
of available literature were made early in this study. For the most part,
these searches indicated a general 'lack of infermation concerning the per-
formance of barriers with varying railing heights. However, three reports
were found that were concerned with barrier railing height. These were
from the States of Virginia(1) and New York(a) and from an FHWA study at
Texas Transportation Institute (TTI)(3). The reports were reviewed, and
brief synopses and assessments are contained in table 1, - More complete
assessments of these and other related documentation are included in
appendix B; an interim report was submitted on completion of task A.

The Virginia report did not contain definitive information about the
relationship between railing height and barrier performance. However, both
the New York and TTI reports did contain information that would be of value
in selecting barrier systems and eStablishing trial railing height guide-
lines. The consensus was that the override/underride vehicle heights
established in the New York study might be better than the bumper mid-
heights of the TTI study. However, this was not conclusive and would be a
subsequent determination of this study.

The TTI report was of particular interest in this study. In
establishing the barrier placement guidelines shown in table 1, the TTI
investigators had conducted 156 computer simulations using the HVOSM
‘code(5) to estimate bumper mid~heights for various combinations of roadside
geometries, vehicle types, and encroachment angles. Included were the 26
roadway/roadside geometric parameters shown in table 2, two vehicle types
[4500-15 (2000-kg) and 1800-1b (800-kg)], and three encroachment angles
(7.5°, 15°, and 25°). If critical override/underride heights could be
determined and the mid-height curves adjusted accordingly, the range of
barrier heights could be established therefrom., Thus, the HVOSM data were

4



Table 1. Synopses of directly related reports.

SYNCPSIS - VIRGINIA STUDY

Reference:

E. T. Hargroves and J. S. Tyler, "Identificarion, Analysis, and
Remedial Treatment of Low Guardrail in Virginia," Virginia Highway
and Transportation Research Council Report No. VHIRC 82-R15,
September 1981.

Abstract:

Guardrails that are too iow may fail to safely redirect errant
vehicles; instead, the vehicles may vault the guardrails,
resulting in severe accidents. An analysis of data on a small
sample of guardrails throughout Virginia showed that over 80
percent of the guardrails were lower than the current standard

height of 27 in.

The causes of low guardrail were identified as installation
of old standards that were lower than current standards,
faulty installation, and inadequate maintenance. Methods for
locating low guardrails were identified and six remedial
treatments were developed ranging from removal of the guard-
rail to complete reinstallation.

A numerical scoring system was developed whereby correction
of low guardrails may be prioritized according to the degree
cof hazard presented by the low guardrail. The scoring system
emplovs an equation based on the guardrail performance
variables considered to be most important; namely, guardrail
heighc, vehicle speed, and expected number of encroachments.
Additional factors that can affect the degree of hazard but
were not included in the equation are guardrail type, conse-
quences of vaulting, and soil type. Provisions were made for
increasing total scores for situgtions in which these variables
are important.

Assessment:

Report might be used to show typical extent of the problem of
non-standard railing heights. Assumptions used for establishing
height and speed indexes in scoring system are subjective and
might be checked with results of this study. However, no
definitive relationship between railing height and barrier per~
formance is given.



Table 1. Synopses of directly related reports (continued).

SYNOPSIS - NEW YORK STUDY

Refarence;
J. E. Bryden, "Development of Proposed Height Standards and
Tolerances for Light-Post Traffic Barriers," Transportation
Research Record 970, 1984.

rrocedure:

1. Vehicle geometric characterics were measured for virtually all 1983
model passenger vehicles, light trucks, vans, and utilicy vehicles,
Characteristics of primary concern were:

a. Bumper override point - height to a point on the bumper which
can lead to vaulting if that point reaches the top of a
barrier.

b. Hood underride point - height to a point on the hood which
can result in underriding if this point gets below the
bottom of the rail.

2. Assumed vehicle suspension range of *3 inches on selected design
vehicle and established desired heights to prevent underride
(submarining) or override (vaulting). Top of rail heights fer
both conditions were:

Cable - 27 in
Box-beam - 27 in
Webeam =~ 30 in

3. Supported results of item 2 from previous New Yerk and TTI full-
scale tests (no vaulting or submarining implies support). Also
supported results from re-examination of previous New York aceideat
study.

4. Mounting height tolerances of *3 inches were found to be s#tisfactory
for most of the vehicle profiles.

Assessment:
Procedure is satisfactory. However, the study is limited to the

weak post systems that agre predominant in New York but not used
much in other States.



Table 1. Synopses of directly related reports (continued).

SYNCPSIS = TII STUDY

References:

1. H. E. Ross, Jr. and D. L. Sicking, "Guidelines for Placement of
‘ Longitudinal Traffic Barriers on Roadside Slopes,” Contract No.
DOT-FH-11-9343, TTI Research Report 363%~1, December 1982.

2, H. E. Ross, Jr., D. G, Smith, D. L. Sicking, and P. R. Hall,
"Teszs of Longitudinal Barriers on Slopes," Contract No. DOT-FH~-
11-9343, TTI Research Report 3639-2, April 1979.

Procedure:

1. A limited crash test program (7 tests), supplemented by computer
simulacions (HVOSM), was used to evaluate performance of longi-
tudinal barriers placed orn sloping terrain.

2. From careful study of the crash test £ilm, it was concluded that
front bumper position relative to the barrier at impact was the
critical factor with regard to vehicle containment and redirectien.
Barriers were categorized as shown in table 1.1, and containment
criteria for the various barrier types are shown in Sfigures 1.1,
1.2, 1.3, and L.4&.

3. From the criteria of item 2, HVOSM runs were made to develop
placement guides (75 figures) for the barrier categoriss of
table 1.1 and various combinations of travelway, shoulder, and
embankment slopes (see figure 1.5 and table 1.2).

Assessment:

This report states that "it was concluded that HVOSM did not have
sufficient capabillities to simulate vehicle/barrier impacts for
notlevel approach terrain. Instead, it was used to accurately
determine vehicle kinematics upon impact with the barrier."” While
an entire appendix was included to show that GUARD was not a
satisfactory program, no support for the accuracy of HVOSM, either
by included documentation or by reference, could be found in the
report. ‘

Barrier categories (table 1.1) should be useful in establishing the
recommended guardrail systems. The containment criteris may or
may not be applicable but should provide a good starting point for
this study. A better indicator for underride might be the hood
underride height of the New York study rather thaa this midheight
of the bumper.



Table 1. Synopses of directly related reports (continued).

Table 1.1 Barrier Categories.

BARRIER
CATEGORY

A

m o O

CCRRESPONDING BARRIER
TYPES

G1, MB3

63

G4{1W), G4(2W), G4(15), G4(25), MB4S
G9, MBS

MB4W



Table 1., Synopses of directly related reports (continuéd).

{Override if midheight of bumper above
centar of tcp corrigation at impact.

I

Tcontainment and redirection if micheight
;of'bumper impacts within this zone.

“Underride if midheight of bumper below

| ~_ _ ‘center of lower corrigation at impact.
' !
i i
b! P F 4 Y
L " .
| t4 k4
Y It eo—— — — -
= =R
= =S
BARRIER  a (in) b (in)
G2(1W) 7.625 17:063
G4(2W) 7.625 17:063
G4(1S) 7.625 17:063
54(28) 7.625 17:083
MB4AW 7.625 20:063
MB4S . 7.825 17:063
Figure 1.1 Containment Criteria,

W=-Beam Barrier.



Table 1. Synopses of directly related reports (continued).

{ Override if midheight of bumper above
! center of top corrigation at impact.

l
1]
I -_FContainment and redirection if midheight
}of bumper impacts within this zone.
I
15.25" :
I !
! —-I Underrride if midheight of bumper below
, - center of lower corrigation at impact.
14,375" ! .
; Y
1
]
===l =0
e L
=} ﬁﬁM[::

Figure 1.2 Containment Criteria,
Thrie Beam Barrier.
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Table 1. Synopses of directly related reports (continued).

| gverride if midheight of bumper above top
| OF cable at impact.

T _] " T T Containment and redirection if midheight
g o of bumper belcw top cable and upper corner
of front fender above lower cable at impact.
,P_ o |} H— - ____L :
: i Underride if upper corner of front fender
: beiow lower cable at impact.
24“ 4

Figure 1.3 Containment Criteria,
Cable Barrier.
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Table 1. Synopses of directly related reports (continued).

l Qverride if midheight of bumper abcve top
of Dax bDeam at imgact.

Lontainment and redirection if midheight
o7 bumpar pelow tcp of box besam and upper
corner of front fender above bottom of
beam at impact.

Underride if upper corner of front fender
betow pottom of box beam at impact.

_ i
— o "t
ST
t‘i
i

i

|

1

21"

(2) Roadside Bex Beam Barrief

24"

f Override if midheight of bumper above top
i of box beam at impact.

- Containment snd redirection if midheight of
| bumper below top of box beam and upper corner
of front fender above bottom of beam at impact.

L

|

*Underride.if upper corner of front fender below
bottom of box beam at impact.

(b) Box Beam Median 3arrier

Figure 1.4 Containment Criteria,

Box Beam Barrier.
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Table 1. Synopses of directly related reports (continued).

Table 1.2 An Index for Placement Guidelines
by Figure Number.

NOTE: Figure numbers in table correspond to those given in Appéndix D.

TRAVELWAY SLOPE
ap=-20:1 ap=-10:1 ap=48:1
Shoulder Slope Shoulder Slope Shoulder Slope
Barrier

Case | Category | Ag=-20 | Ag=20 | Ag=-20 | Ag=-10  Ag=20:1

1 A D~} D-2 0-3 D-4 D-5
2 A D-6 D.7 D-8 0-9 D-10
3 A p-11 D-12 D-13 D-T# ' D-15
1 B D-16 D-17 D-18 D-1§ D-20
2 B D-21 D-22 D-23 D-24 D-25
3 B D-26 0-27 D-28 D-29 D-30
1 ¢ D-31 D-32 | D-33 D-34 D-35
2 < D-36 D-37 D-38 D-39. D-40
3 c D-41 D-42 D-43 D-44 D-45
1 D D-46 D-47 D.48 D-4% D-50
2 D D-51 D-52 D-53 D-54 D-53
3 D D-56 b-57 D-58 D-59 D-60
1 E D-6} | 0-62 D-63 D-64 D-€5
2 13 D-66 D-67 D-68 D-69 D-70
3 E D-7% 0-72 D-73 D-74 p-75

14



Table 2. Roadway/roadside geometric parameters.

TRAVELWAY | SHOULDER], EMBANKMENT |

© 100 12 7 1000
at'
1""_.

v Positive sloping downward to right.

i, | +48 -20 . -10,

a +20 | +20 -20 | +20 -10
+ 4 + 4 + 4 +4 + &
+ 6 + 6 + 6 + 6 +6.

a, + 8 + 8 + 8 + 8 + 8
+10 +10 +10 +10 | +10
-8 -8 -8
-4 -4 -4
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requested and received from TTI. A computer program was then prepared for
graphical presentation of the data. A sample plot is shown in figure 2.
The manner in which these curves were used to establish barrier height

limits is discussed in chapter V.
B. Vehicle Survey

1. General. With the apparent importance of both bumper height and
pessibly bumper geometry in establishing ecritical barrier override/
underride heights, a vehicle survey was undertaken to establish represen-
tative values and ranges., Sales figures for the more common vehicles sold
in the United States were collected for the years 1980 through 1983. Field
trips were then made to measure the bumper geometry and to collect
brochures with photographs of the different bumper types.

Based on crash test results with W«beam traffic barrier, it was
determined that the leading edge or surface of the bumper was critical for
both underride and override. Using this relationship, the bumper geome-
tries of current vehicles were grouped into six categories as shown in
figure 3. The collected sales information was totaled and weighted to
reflect the average bumper override/underride heights. As shown in
table 3, the data was then divided into ranges of override and underride
heights. Figures 4 and 5 are underride/override exceedance curves prepared
from these results. Shown are heights at the 85-percentile levels, which
produced different values for underride/override heights [18.8 in (48 cm)
and 17.1 in (43 em)]. It was decided to select a single value of 18 in
(46 om) for both underride and override heights. As shown in figure &,
this was the 98-percentile level for underride and, from figure 5, the 99-
percentile level for underride. The exceedance curves in figures 4 and 5
describe what percent of cars purchased from 1980-1983 had bumper values
that exceeded a given value. Example: 98% of the vehicles had bumper
heights that were equal to or greater than 18.8 in for underride considera-
tion as shown in figure 4, Thus, a design vehicle with a single 18-in

16
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Table 3. Vehicle survey data.
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PRELYDE 50424 43458 172972 41108 173184 14.6 17.9

MDA [ ¥4 423573 2193 J4348 g 230440 14.3 17.3
- b2 35281 (177, 8rad 11, 73] 244037 13.3 18.3

-7 a2 a3als 50042 52314 W37 1s.8 1.8

NISSIAN  J10/PULSAR Y5204 7% san3 60213 207230 14.0 0.4
SENTRA ° ° 131789 200080 T 1S 1S

STANTA | ] 7323 " 44437 132164 14.0 0.0

HAXIRA 40d 35883 sagr Y200 173409 15.3 145.4

2008x 7514 770482 Wi T unm 120 04

200/3002X 71513 2004 $7260 140 7V 15.8 15.4
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Table 3. Vehicle survey data (continued).

SubaRy (aLL) 142948 152042 150335 156840 402205 14.3 1.4
T0v0T4 CoROLLA 257300 241403 175198 143430 817531 16,9 19.0
s TERCEL 9000 121329 13589 147945 {231 1 16.5 1.5
CEL1EA 152400 10387¢ 113499 117834 408 14.0 19.5
SUPRA [ T3 7Y J4ddé 24972 77164 14.9 18.9%
CANRY ] ¢ 1 J2454 32454 12.0 20.0
ERESSIDA 11428 20303 32400 3192358 118414 15.3 17,8
w RADBIT 122146 142445 LARYY] 85043 51570 14.¢ 1t.0
+ .
QO ACCURULATED TOTALS 499970, +H7TN3. h41938, 7065008, 27943322,
PERCENT OF TOTAL $ALES 4.4 703 7.3 | ' } 0.7

O THE AVE. OVERXIDE HEISNT I3 16.0
THE AVE, UNBERRIDE MEIGNT IS 17.4

ABJUSTED
sssesse OVERRIDE HEIGHTS semaves

14.0 70 14.0 13.0 T 15,0 16.0 70 Y6.% 12,6 70 12,0 OTRERS

.3 30.63 4.0 17.m R

ARJUSTER
ssssers UNDERRIDE HEIBHTS eseeves

17,0 T¢ 17.9 15.6 70 10,9 12.0 10 1020 20.4 10 20.¢ 21.0 10 21.% DTHERS

1.34 17,40 4.0 24.24 7.43 1.39
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(46-cm) bumper underride and override height was selected for subéequent

use in establishing the barrier height limits.

2. ﬁerodynamically Styled Vehicles, Later in the project a minimal
effort was expended in investigating the influence of the low front profile
cars and possible associated problems with barrier mounting height.

Figure 6 gives data from a limited survey. One full-scale crash test was
conducted with the Datsun 260ZX shown at the bottom of the list.
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AERODYNAMICALLY STYLED FRORT ENDS
car Year A B C D E F
2802X 80 38 3 6 13 33
Dodge Datons 85 S8 42 9 10 1/2 37
2802X 83 44 40 41/2 15 33
Chevy 228 86 38 I 71/2 121/2 3%
Porche 924 81 62 3%°1/2 41/2 13 35 s 1/2
Mazda RX7 83 32 s 51/2 151/2 31
300 ZX 85 2% 3512 7 14 32
Corvette 8s 49 41 7 112 10 1/2 Kk
Firebird BS 49 1/2 44 10 12 1/2 35
Mazda RX7 86 311/2 35 6 13 172 32
Datsun 2602X 74 33 39 A 14 3/6 32 3 3/4

Figure 6. Aerodynamically styled car geometries.

24



III. ANALYTICAL STUDY
A. Selection of Simulation Program

As indicated in chapter I[, an apparent lack of definitive performance
information existed in the general literature for the effects of varying
barrier railing heights. Determination of critical override/underride
heights for the five barrier categories of table 1.1 by full-scale crash
tests was not economically feasible. Thus, a major effort was directed in
this study toward the development of an analytical model to provide simula-
tion guidance for these =ffects.

The computer program selected for simulation use was HVOSM, Versién
RD2.(5) Other codes considered were GUARD(®) and CRUNCH(7). Preliminary
reasons for making this selection are discussed in appendizx B. Other
Justifications for utilizing HVOSM-RD2 as the most applicable code of
available programs were based on the following:

. It had what was believed to be the most advanced vehicle
model. In particular, it had a steering/wheel degree of
freedom (DOF) while the GUARD vehicle model simulated a
"locked" wheel condition. The DOF associated with the
HVOSM wheels might have a pronounced effect on wheel snag
vehicular behavior,

. It had the capability of simulating vehicle side and bottom
sheet metal/barrier interaction forces. The GUARD vehicle
was limited to only side panels for the sheet metal and
wheels. Notably, interaction between the vehicle bottom
and barrier rail top might significantly enhance vaulting
potential.

. HVOSM had been extensively used by several research organi-
zations. This had attributed to significant validation
data being collected over a number of years. On the other
hand, programs such as CRUNCH and GUARD had not been
validated to a degree which would warrant their use in this
particular hardware development program.

. Documentation associated with GUARD and CRUNCHE was very

limited to the unfamiliar user. In turn, an inordinate
amount of time would be required toc be able to utilize
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these codes with the same efficiency as when using the
HVOSM-RDZ2 program.

B. HVOSM Modifications

The tape of HVOSM-RD2 was furnished by FHWA at the start of the task.
Modifications were first made to convert the program to operatibnal status
on the Institute's CDC equipment. Two sample cases (one rigid and one
flexible) were then run and compared with previous results. Both runs
checked out satisfactorily. Thus, the program was ready for the proposed
wheel snagging (underride) and vaulting (override) modifications.

As modifications were tried, problem areas arose in the basic program
involving the correct passing of variables via common blocks from one sub-
routine to another. Notably, an error was found involving the lack of
COMMON block INTG in subroutine EGYSUM. This error had not been discovered
previously because the earlier runs did not use EGYSUM.

Work continued on modifying the HVOSM-RD2 program and fixing further
unexpected errors that appeared in the code as the work progressed. The
extensive modifications that were made in the code included the following:

. Capability to include post stiffness characteristics that
differ in the longitudinal and lateral directionms.

. Wheel interaction with post (wheel snagging capabilicy).

» A reaction force capability that is imposed on the right
front wheel if the top of the tire is below the bottom of
the rail (wheel underriding capability).

. A vaulting or overriding capability of the barrier rail.

.. User ability to specify barrier blockouts.

. The wvehieular response due to the vertical (downward)
deformation of the barrier railing).
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One croblem that arecse uas.that the overriding aspect could not be
simulated in the original RD2 code. This was verified by the simulated
rediresticn of a 4300-1b (2000-kg) vehicle by a 5-in (13-cm) high flexible
barrier system. OQutput data showed reaction force locations on the
vehicular body well above the top of the rail. Changes were made to

eliminate these erroneous vehicular-barrier forces.

With these changes and modifications, the program was considered ready
for the validation efforts,

C. HVOSM Validation Efforts

To verify the changes and modifications of HVOSM-RD2, the program
predictions were compared with full-scale crash test data. The first tests
were two conducted on slopes by the Texas Transportation Institute (TTI),
as shown in figures 7 and 8.(u) Table 4 shows HVOSM validation results
involving the vehicular vaulting of these tests. In particular, Case Nos.
4 and 7 were validation runs. Cases No. 5 and 6 were performed to verify
that the vehicle would not vault the barrier when the railing height became
great enough. Note in TTI test 3659-1 that the vehicle vaulted the railing
with less redirection than in test 3659-3. This aspect was reflected by
the two validation runs (cases 4 and 7). Specifically, the maximum
recorded lateral displacement of the bumper monitoring point (BMP) was
greater in case 7. With respect to the 50-ms acceleration levels, very low
longitudinal and lateral values were simulated in case 7 because of the
HVOSM vehicle sheet metal making contact with the very teop of the
railing. This induced primarily a vertical reaction force, which indicated
the need for the incorporation of vertical vehicle-barrier interaction as
delineated in section B of this chapter.

Five full-scale validation tests were then conducted in this study
(see chapter IV and appendix A). Override (vaulting) was first checked.
Difficulties initially arose when effort was made to simulate the vaulting
of a 22-in (56-cm) barrier system (Tests BH-2 and BH-5) and the redirection
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Table 4§,

HVOSM simulation summary.

MAX
Case Accel levels (G's) pMpt Barrier
No Description Long Lat Vert (in) Location (YB) Comments
4 TTI Test 3659-3 6.4 5.2 2.2 399" 340" 27-1n Barrier (EFigure 7)
(8.5)* (6.0) (5.9) Vehicle .
Vaults Barrier
5 Test 3659-3 9.3 7.7 4.6 395" 340" Vehicle
w/30-1n Barrier Straddles Barrier
6 Test 3659-3 8.2 7.0 3.7 g 340" Vehicle
w/33-in Barrier Redirected
7 TTI Test 3659-1 0.5 1.8 2.6 451" 268" 27-1n Barrier (figure 6)
: (7.0)* (9.5) (4.5) Vehicle

TLocation of Bumper Monitoring Point (in) at termipation or

*Test Results

Vaults Barrier

maximum lateral location.



of the vehicle with a 24-in (61-cm) rail height (Test BH-4). Review of
test films showed the vehicle bumper striking the upper sloped portion of
the W-rail for Tests BH-2 and BH-5. This induced a significant vertical
uplifting force that contributed to vaulting. In HVOSM, however, the
barrier was represented by a flat vertical plane as was the vehicle side
panel. Thus, the program could not simulate this phenomenon. Accordingly,
additional changes were made to the code to effectively simulate this
aspect if the vehicle bumper struck the upper portion of the rail. This
entailed the user's setting a FLAG in the input data deck if simulating a
full-size sedan impact into a flexible barrier having W-beam or thrie beam

geometry,

Three simulations were performed to validate this modifiecation through
comparison with full-scale Tests BH-2, BH-4 and BH-5. Test results of
these 60-mph (95-im/h)/25-degree impacts into a 22-in (56-cm) and 2i-in
(61-cm) high flexible barrier and corresponding simulation results are
given in table 5, Notably, vehicular vaulting was predicted with the HVOSM
code for Tests BH-2 and BH-5. Barrier deformation and number of post
failures compared favorably for Test BH-2. Good results also existed for
Test BH-U, where the vehicle redirected in both full-scale test and
simulation run.

Validation of the modified HVOSM-RD2 program by comparison ¢f simu-
lation results with full-scale underride Tests BH-1 and BH-3 was next
conducted. Results, as shown in table 5, demonstrated a slightly stiffer
barrier response in the simulations over actual tests. Simulation of Test
BH-1 resulted in two post failures versus four in the actual test, while
the BH-3 simulation had five post failures compared to seven during the
crash test. Notably, however, the simulations did correctly predict
vehicular (bumper). underride for Test BH-3 énd no underride for Test BH-1.
- Further, the simulation results (BH-3)} included a pitching down motion of
the vehicle as the right front bumper caught under the barrier railing with
the railing impeding any uplifting motion during redirection. As antici-
pated, the lengitudinal acceleration from the simulation of Test BH-1 was
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significantly higher (7.3 g's) compared to the test results (4.2 g's).
This was believed due to the wheel being torn off during the full-scale
test, a phenomenon well beyond the capabilities of the HVOSM code,

Based on favorable validation results from test results of the TTI
slope study and the five validation tests that had been conducted,
modification and validaticn of the HVOSM program were considered complete.
A briefing with FHWA was then scheduled to discuss findings to date and to
direct subsequent work. The following summarizes the modifications that
had finally been made for the HVOSM-RD2 code to permit the evaluations of

vehicle override/underride:

. Defined discrete posts, up to 36 posts

- %, dimension

- spacing, x

- location of axis of rotation

- stiffness, x,y

- maximum displacement for post failure, x,y
- location of base of post.

. Defined barrier system

- BARRIER VII(8) used to obtain 5th order polynomial for
rail-post interaction (allows post to deform without
vehicle contact).

- Modification made to allow vehicle to vault or ramp over
the system.

- Modification permitting transfer of railing vertical
force component to vehicle; i.e., vertical stiffness of
rail is input
- upward for override condition
- downward for underride condition.

. Vehicle model modification

- diameter and width of hub specified to interact with
posts.
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D. HVOSM Sensitivity Analyses .

Based on comments made at a project briefing, there was some concern
about sensitivity of certain HVOSM parameters as they affected vehicle
trajectories prior to barrier impact. The parameters mentioned included
suspension damping and steering/braking. Thus, a limited series of sensi-
tivity'analyses were” conducted to check these concerns.

1. Suspension, The first sensitivity study was performed with
HVOSM-RD2 on the viscous damping coefficients and the suspension load
deflection rates to determine their effects on the bumper location above a
given terrain. The model used for the studies was a 1978 Honda Civic with
suspension properties measured in Q previous University of Michigan
study. Figure 9 shows a plot of two bumper heights with respect to a cross
section of the terrain. Used in the calculations were slopes of the lower
and upper portions of the curves in figure 10 for the front/rear damping
coefficients and corresponding offsets. 4 small variation in the rebound
height is indicated in figure §. When Ehe damping coefficients were varied
by 20 percent, the change in bumper height was less than 1 percent as
shown in figure 11.

The load deflection rates as represented in figure 12 were varied
by =50 percent, and the bumper height variation is shown graphically in
figure 13. As shown, this affected the bumper height very slightly.

Figure 14 compares the response of the Honda with the response of
a VW Rabbit modeled under a separate FHWA contract. The load deflection
rates and offset values were quite different for each vehicle, yet the
change in bumper height was insignificant.

Based on these analyses, it was concluded that suspension load

deflection rate and damping had no significant effect on the bumper heights
of a vehicle traversing a side slope.
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Front and rear damping curves for,1978 Honda Civic.*
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Figure 10,
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GENERAL FORM OF SIMULATED SUSPENSION BUMPER CHARACTERISTICS

Figure 12. Suspension load deflection variables.
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2. Steering/Braking. The sensitivity analysis of steering/braking
could not be conducted with the RD-2 version of HVOSM because the version
did not ineclude steering/braking inputs. Thus, the original TTI version
was selected for use. However, this version did not include the bumper
height subroutines and had to be modified to include the subroutine before

the analysis could be started.

The first set of runs was made on an embankment slope of 4:1.
Terques were applied to the wheels $o simulate full braking, and steering
angles of 20°, 0°, and -20° were specified as driver input. As shown in
figure 15, the effects on bumper heights were insignificant. On inspecting
the vehicle ¢.g. lateral and longitudinal displacements, it was found that
no changes occurred between the three cases until wheels of the airborne
vehicle made good contact with the ground (between Y = 1400 and Y = 1500
incheg in figure 16). This was reasonable and indicated that a flatter
slope should be used to reduce the airborne tendency. Thus, runs were made
on a 16:1 embankment slope, as shown in figure 17. Effects on bumper
height and vehicle lateral/longitudinal trajectory were even less

pronounced,

This lack of change, particularly in the vehicle lateral/
longitudinal trajectory, did not look reasonable. In the two sets ®f runms,
the specified coefficient of friction between the tires and ground was

u = 0.25. A value of u = 0.50 was used to calculate the wheel torques for
full braking. . With locked wheels and the low coefficient of friction as
the vehicle moved down the slope, the low effect of steering was not as
unreasonable. Thus, the second set of runs was repeated with u = 0.25 for
partial braking torque and u = 0.50 for the tire/ground coefficient of
friction. Results are shown in figure 18, where it can be seen that
steering toward the road (+20°) did stop the vehicle's downward travel and
turned it back. The change in bumper height was not significant except for
a small zoné down from the slope break where a variation of 1 1/2 in is
indicated,
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Based on these results, it was concluded that reasconable

steering/braking variations had minimal effect on bumper heights.
E. Final Checks on and Disposition of HVOSM

Tests BH-7 through BH-10 were conducted on barriers placed on side
slopes (see chapter IV and appendix A). Prior to construction of the test
installation, concern was expressed by FHWA regarding the effects of
traversing the flat runway approach to the 10:1 superelevation., As shown
in figure 19(b), the width A had originally been proposed to be 10 ft
(3.0 m). 1In order to examine the difference between traversing the cross
sections shown in figure 19, a series of HVOSM simulations were conducted.
As shown in the summary of results in table 6, a width 4 of 10 ft (3.0 m)
produced significantly different bumper heights at the barrier locations
than the constant 10:1 slope of figure 19(a). A width of & of 15 ft
(4.6 m) produced bumper heights that were essentially the same as the
constant slope, Thus, based on these simulations, the test geometry was
revised to 4 = 15 ft (4.6 m).

To provide guidance in establishing test railing heights for vehicle
underride/override, the HVOSM program was exercised. The underride height
(grade to lower point of rail) on the test vehicle for Test BH-6 had been
measured at 20 in (51 cm). Table 7 shows agreement with the test in that
underride occurred at the 32-in (81-cm) overall barrier height. The
simulation shows in the table that vehicle redirection would have occurred
with a 30-in (76-cm) overall height,

For the sloping terrain Tests 7 through 10, a single underride/
override height of 18 in (46 cm) was used, corresponding to the design
vehicle, Table 7 shows a threshold height of 30 in (76 cm) for Test Ne. 7.
A héight of 30 in (76 cm) is indicated for Test No. 8, but the impact angle
should be changed to the more critical 15°. A 22-in (56-cm) height should
be used for Test No. 9. A 26-in (6é6-cm) height should be used for Test No.
10, but the impact angle should be changed to the more critical 25°.
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Table 6. Summary of HVOSM simulations - sloping terrain;

Figure 19 Vehicle Bumper Height, in
Case Geometry A 504 648
1 (a) - 0.80 -27.15
2 (b) 10 -3.23 -30.10
3 (b) 15 0.94 -27.13

* All simulations used 1800 1b car, 60 mph,
25-degree conditions.
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Table 7. Critical underride/override barrier mounting heights as determined by simulation results.

6%

- overturn was toward the road ,
- unpredictable results because of HVOSM program limitations
(T) - Threshold mounting height i3 between the 2 height values shown

Vehicle Impact Test Barrier Ht
Angle  Angle Criteria 32" 30" 28" 26" 24" 22" Remarks
1800 25¢ Underride S (T) R
1800 25° Override oT* oT* (T) R L hinge
4500 25° Override R(T) V point
1800 15° Underride S S (T) R R tests
4500 15¢ Underride S S (T) R
1800 25° Override S S S S(T) R (T) v/0T
4500 25° Override S S S S(T) R (T) v/0T embankment
1800 15° Underride S S S(T) R tests
4500 150 Underride S * 8 (T) R
S - snaggling and/or underriding
R - redirecting
V - vaulting
OT - overturning
]
u



On completion of the test facility and conduct of the first of the
slope tests (Test BH-7), simulation runs were made with the modified HVOSM
program to compare predictions with measured test results. The comparisons
of three of'these runs are shown in table 8. As shown in the table, the
largest discrepancy occurred in the bumper heights at impact. Several
other runs were made with various input changes, but significant

improvement in correlation was not achieved.

Because of the cfiticality of bumper heights in the important end
result that was expected from the study (see chapter V), it was considered
essential that satisfactory correlation between test and simulation be
achieved. Thus, an extended effort was made to check the adjustments of
additional HVOSM input parameters.

As a first step, the actual terrain of the test installation was
surveyed for input into the existing HVOSM model. Various driver input
steer angles and times of duration were.then entered into the system to
simulate the vehicle trajectory after breakawzy from the guide cable.
Table 9 shows the comparisons of test results and the various simulation
predications. As shown in the table, no significant improvement in bumper
height correlation was achieved. Because of the criticality of bumper
heights, it was decided to add a large car underride test [4500 lb
(2000 kg)/60 mph (95 km/h)/15°) for the next test BH-8.

Efforts continued to obtain satisfactory correlation of vehicle bumper
heights. As shown in table 10, computer simulation 1 and the results of
Test BH-8 compared very favorably. For a 19-degree departure angle, the
HVOSM simulation predicted no underride, as confirmed by the test.
Simulation 2 with the standard 15-degree impact did not predict underride.

The difference in bumper height between the two simulations of
table 10 is substantial, indicating that the impact angle was a critical
variable in these tests. In previous tests, vehicles had been released
from the guidance cable at the edge of the concrete approach apron at the
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Table 8. Comparison of HVOSM predictions with Test BH-7 results.

Bumper Underrlde
Height at Impact

Impact Speed

Item (in ) (mph)
Test Bli-7 Results 22.1 58.3
Simulation 1 19.46 58.3
Simulation 2 18.35 57.9
Simulation 3 18.63 58,2

NOTE: All simulations predicted underride of bumper and vehicle redirection.

Impact Angle

(deprees) Hemarks
15.6 Values measured at impact
with barrier. Speed trap speed
at edge of apron = 58.8 mph
16.77 Run with initial apeed =
58.8 mph and initial angle =
18 degrees
16.02 Same as Slmulation 1 except for
initial angle = 17 degrees
15.66 Same as Simulation 1 excepr for

increase in base material
coefficlient of friction and
softening of vehiicle suspension
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Table 9. Comparison of HVOSM predictions with Test BH-7 results
for steer angle input.

Bumper Mt X Location Impact Taput Time of

@ Impact @ impact Angle Steer Anglen Steer Angles
__Jtem (inches) (dnchen) {degrees) {degreen) (sec) Remacks

Al-7 Test Results 22.1 1758 15.6 - -
Simulation 1 19.07 1647 ' 15.35 - - Runs with actuni surveyed tercaln
Simubatlon 2 19.54 1800 12.0 -l 001 to .00B Steecing angle input to simulate vehicle break-sway
from ateer cable.
Simelation 3 19.54 16060 15.25 -1 .00l to .002 "
Simndat ton & 19.68 1710 15.2 -1 .00l to .00} "
Simulation S 19.62 1690 15.54 -2 008 “
Slmulation 6 19.58 1709 15.21 -1 001 - .002 "
-.5 003 - .004 "

Stmulation 7 19.78 1736 14.92 e | 001 "

NTE: Simulations 2 thcough 7 did not predict underride. These atmulatfons were also run with the surveyed terraim.



Test/Slmulatlon

Initial Speed
Initial Angle
Impact Speed
Impact Angle
Impact Bumper Ht

w Remarks
W

Table 10. Computer simulation/Test BH-8 comparison.

Test BH-8

60 mph

18° (estimated)
59.5 mph

19.5°

28.5"

Vehicle redirected

Simulation 1

60 mph
19°

58.83 mph
19.5°
28.4"

Predicted vehicle redirection

Slmulatlon 2

60 mph
15¢°

59.55 mph
15.6°
23.5"

Predicted underride/
Bnag



test site. After disengagement, .the vehicle moved up the 15-ft (4.6-m),
10:1 slope and then down the 12-ft (3.7-m), 20:1 slope to the barrier. On
assuming that the vehicle would drift to the left, an angle of 18° had been
laid out on the apron. In Test BH-7, the 1800-1b (800-kg) car did move to
the left and impacted the barrier at 15.6°. However, the U4500-1b (2000-kg)
car of Test BH-8 moved to the right for an impact angle of 19.5°. A repeat
of this test (BH-9) with a 15-degree approach revealed a drift to the left
with an impact angle that was too low. Because these differences in impact
angle were so significant in vehicle response, problems involved not only
the HVOSM correlations but also theose associated with the test guidance

system.

The last two slope tests (BH-9 and BH-10) were finally simulated using
the modified HVOSM program. Table 1! summarizes the results. Although
underride was not predicted by either simulation, which agreed with test
results, the height of the bumper at impact was considerably lower in the
simulations than observed in the tests.

It became evident both from the sloping terrain simulations and test
results that the bumper height at impact was very sensitive. Despite the
extensive efforts to achieve satisfactory bumper height correlation between
the HVOSM predictions and test results, the recalcitrant problem persis-
ted. The difficulty was in controlling the experihents accurately enough
to identify threshold conditions on sloping terrain. The trajectories of
vehicles crossing sloping terrain at various speeds and angles vary
considerably; and in all cases, satisfactory performance was obtained in
the experiments due to (in part) the variance from the desired impact
conditions. Thus, it was decided to terminate work on the analytical study
and to determine critical underride/override railing heights by full-scale
tests. Because of the relative costs of simulations and tests, the scope
of work necessarily had to be reduced. However, the problem of
satisfactory correlation was apparently unresolvable,
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. Table 11. Comparison of test and simulation for Tests BH-9 and BIl-10,

* Estimated for test, actual for simulation.

Test BH-9 Simulation Test BL~-10 Simulation Simulation
Initial Speed, fps 86.3 85.7 88.0
Initial Angle, deg* 15.0 14.5 15 15.0 15.0
Impact Speed, fps 85.7 85.6 85.1 85.1 B7.4
"Impact Angle, deg 12.5 12.6 13.6 13.6 15.6
Bumper Height, in 24.0 1.1 25.5 21.4 23.5
Underride predicted no no yes



IV.  SUMMARY OF FULL-SCALE CRASH TESTS

A. General

Sixteen full-scale crash tests were conducted in the project using
primarily 4500-1b (2000-kg) and 1800-1b (800-kg) sedans. One low front
profile car was used to examine barrier mounting height problems with this

vehicle type.

The selected barrier systems were installed and evaluated by full-
scale crash test according teo the procedures of NCHRP Repert 230, Data
were recorded by high-speed cameras and electronic transducers. Drawings
of the barriers evaluated in this project are shown in voiume 2, Detailed

descriptions of the tests are given in volume 2.
£

The purpose cof these tests was to establish threshold mounting heights
at 60 mph (95 lm/h) for a range of three angles (7, 15, 25). The 15-degree
impact angle was chosen as being consistent with NCHRP Report 230 that
states on page 23: '

"It is stressed that test conditions given in Tables 3 and 4 are
not all-inclusive. There are other conditions that may need to
be examined due to the peculiarity of the test article or unique
feature of the potential installation site" ...e.g., sloping
terrain." '

The crash tests are briefly described in the following sections; the
tests are summarized in tables 12 through 14, In these tables, an
assessment is made regarding compliance with the recommended evaluation
criteria of NCHRP Report 230, table 7.

B. . Critical Mounting Height Tests, Series 1

Six tests were conducted on G4(1S) guardrails installed at various
heights on level terrain, The tests are summarized in table 12 and
described briefly in the following paragraphs.
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Table 12.

Summary of critical barrier height tests, series 1.

Test No. Bil-1 -2 Bil-3 -4 BH-5 -6
Bacrler Helght, In Jo 22 k“Lh 10" 220 jan
Test Vehicle 1978 Dodge 1978 Dodge 1978 Dodge 1978 Dodge 1978 Dodge 1979 bodge
Groas Vehicle Weight, 1b N735 8633 X675 4699 4762 2000
Impact Speed (fllm), mph 61.1 59.7 59.6 60.3 61.2 61.4
Impact Mgle, deg 25.9 26.8 25.0 248.4 26.5 25.0
lmpaat Duration, sec .58 .40 Rail Pocketed ] A5 Not Avall
Haximum Deflectlion, in .

Dynamic 35.2 Not Avall Ratl Fracturad 27.6 Not Availl 3.5

Parmanent 2.3 4.0 Rail Fractured 25.0 11.8 1.8
Exit Angle, deg

Film -12 Vohicle Vaulted Did Not Exit »-20 15.1 Did Not Exit

Yaw Rate Tranasducer Not Avall Vehicle Vaulted Dld Mot Exit )-20 12,7 Did Not Exlit
Exit Speed, mph

Film 36.5 Vehiole Vaulted Dld Not Exit Nabt Avall 50.0 Did Not Exit

Aacelerometer Not Avall Vehicle Vaulted Did Mot Exit Not Avall 55.0 Did Not Exit
Haximum 50 ms Avg Accel

{rila/accelerometer) ‘

Longitudinal -%.2/Mot Avall -3.9/-6.1 -6.37-6.3 ~2.17-2.9 -3.27-2.7 Hot Avall/-6.7

Lateral -5.7/Not Avall -2.8/-3.6 -3.2/-6.3 -6.6/-1.9 -2.4/4.2 Not Avulilsd.6
Occupant Risk, NCIRF Report 2

(l‘ullacooiero-ncr,

AV long., fps (30) 20.0/M0t Avall 14.3/17.1 23.6/Not Avall Not Avail 13.4/8.6 Not Avall/23.1

AV 1at, fps (20) 12.3/Mot Avall 11.7/8.8 $3.5/Not Avail 18.3/18.5 1.4/3.1  Not Avail/-th.B
fiidedown Acceleration, g's

{acoelerometer)

Longltudinal (15) -2.8 (film) -0.5 (Film) ~5.8 (f1)m) Not Avail -2.8 -9.6

Latersl (15) -5.7 (rilm) 9 (rlim}) -3.0 (rilm} -13.1 -31.6 5.7
NCHRP & t 2J0 Evaluation :

Structural quacy {A,D) Passed Falled Falled Passed Failed Falled

Occupant Riak (E) Passed Passed Passed Passed Passed Passed

Yehicle Trajectory (H,1)+ <15 Falied Falled > 15 Failed Passed

: * 15 ' <15°

¥  Peam attached to post uslng rectangular washer.
% Mo reotangular washer.

+ 60f Exit Angle 15°

+s AV = 15 mph
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Table

Test No.

Barrier Helght, in

Test Vehicle

Grosa Vehicie Weight, 1b
Impact Speed {film), mph
Ilmpact Angle, deg

Impaot Duration, aea

Maximum Deflection, In
Dynamtc
Permanent

Exit Angle, deg
Fllm
Yaw Rate Tranasducer

Exit Speed, mph
Fila
Accelerometer

Haximum S0 ms Avg Accel
{Film/accelerometer)
Long ltud lnal
Lateral

Occupant Risk, NCHRP Report 2
(fllm/acce igrmterf
AV ltong., fps (30)
AV lat, fps (20)

Ridedown Acceleration, g's
(accelerometer)
Longitudinal (15)
Lateral (15)

NCHRP heport 230 Evaluatlon
Structural Adequacy (A,D)
Occupant Risk (E,F,G)
Vehlcle Trajectory (M, 1)

*  No rectangular washer.

13. Summary

bli-17
320

1979 ilonda
1950
58.3
15.6
17

Not Avail
13

-3.1/-1.6
-6.0/-8.6

3.6712.9
10.8/19.7

0.4
-12.0

Passed
Passed
Passed

% Occupant did not travel required distance.

of sloping terrain tests.

bn-g
32
1978 Plymouth
4660
59.5
19.5
M6

-2.0/-3.3
L7 )

10.2/16.6
-1%.4/-13.0

-4.9
6.9

Passed
Passed
Passed

oi-9
j2n

1978 Plymouth
1650
50.4
12.5
.35

23.3
9.3
3.4

-2.1

52.0
9.8

-1.1/-2.7
3.272.M

10.3710.2
-13.67-11.5

-0.9
-1.7

Passed
Passed
Passad

w-10
3o
1978 Plymauth
Xolo
58.0
13.6
.38

-2.8/-1.6
3.8/3.9

1.4/8.6
-13.5/-W.1

4.8

Passed
Passed
Passed
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Table 14.

Test No.,

Barrier Height, In

Teat Vehlicle

Gross Vehlcle Welght, 1b
Impact Speed (film), mph
Impact Angle, deg

Impact Duration, sec

Naximme Dafiection, in
Dynamie
Permanont

Exit Angle, deg
Flim
Yaw Rate Transducer

Exit Speed, mph
Fllm

Accelerometer

Maxisum 50 Avg Accel
(T 1im/Acceleromater)
Longltudinal
Lateral

Occupant Risk, NCIRP Report 230
{fiim/a0celerometer

AV long., fpa (30)
OV lat, fps {20)

Ridedowun Acceleratlion, g's
{accelarometer)
Longitudinal {15)
Lateral {15)

NCHRP Report 230 Evaluation
Structural Adequacy (A, D)

Ocoupant Risk {E,F.C)

¥ehicle Trajectory (H,1)

®  No rectangular washer.

Summary of critical barrier height tests, series 2.

-1
i3

1978 Plymouth

4715
61.0
6.8
.38

-0.8s-1.7
2.5/2.9

7.71.2

-12.3/-11.9

1]
2.2

Passed
Passed
Paszed

"% Ocoupant did not travel requlired distance.

an-12
e

1978 P1ymouth

4715
61.2
w.5

59

21.9
13.6

-4.5
Not Avall

LLA
Not Avall

-4.9/-3.8
3.5/4.3

13.5/13.9

-14,2/-14.3

-2.0
8.5

Passed
Pissed
Pazsed

m-13
ki L)

1978 Plymouth
k650
59.6
19.5

62

42.0
26.0

-0.2
Not Avail

3jo0.0
“ Not Avall

~-3.1/Kot Avail
3.8/Not Avall

19.4/Not Avail

-14.0/Not Avall

Not Avail
Not Avail

Passed
Pussed
Passed

-4
18
1978 Dodge
4670
61.7
7.6
Ly

Not Avall
1.8

-4
Not Avall

51.9
Not Avail

-2.0/-2.8
2.4/2.0

3.1716.0
-12.0/-8.2

Passed
Passed
Fasaed

Wi- 15
220
1978 Dadge
4670
62.7
13.6
.39

-2.9/-4.7
b5

14.0716.5
-15.1/-14.8

-3.7
9.7
Passed

Passed
Passed

ni-16
27 (Gl syutem)
1974 Datsun 2602
2740
59.6
24.8
.89

6.5 (re)
cabley on ground

Not Avall
Nut avall

Not Avall
Not Avail

12.9/11.3
4.1/715.9

-5.1
-7.9

Passed
Passed
Passed



Test BH-1. The purpose of this test was to evaluate the GU(1S)
guardrail (coupled) for underride with the W-bsam mounted at 30 in (76 cm)
above grade. The underride height for the test vehicle was 20 in (5% cm)
as shown in figure 20. Impact conditions for the 4735-1b (2140-kg) gross
weight vehicle were 61.1 mph (98.3 km/h) and 25.9°. The vehicle was
redirected as snhown in figure 21, although snagging occurred due to wheel
contact with posts. The maximum dynamic deflection was 35.2 in (89.4 cm);

vehicle and barrier damage are shown in figu}e 20.

Test BH-2. The purpose of this test was to evaluate the GY(1S)
guardrail system for override with the top of the barrier at 22 in (56 cm)
above grade as shown in figure 22. The critical override height for the
test vehicle was 20 in (51 ecm). Impact conditions for the 4633-1b
(2101-kg) vehicle were 59.7 mph (96.0 lm/h) and a 26.8-degree angle. As
shown in figure 23, the test vehicle bumper immediately rode up over the
W-beam, causing the vehicle to ramp. The vehicle remained in.contact with
the rail for 17.5 ft (5.3 m) before vaulting over the system. Damage to
the barrier and vehicle are shown in figure 22,

Test BH-3. The purpose of this test was to evaluate GU(1S) system
mounted at 32-in (31-cm) for underride as shown in figure 24, Test condi-
tions included a 4675-1b (2120-kg) vehicle with a 20-in (51-em) underride
height impacting at 59.6 mph (95.9 km/h) and angle of 25.0°. As shown in
figure 25, the test vehicle bumper immediately rode under the rail and
snagged on the next downsbreém post. The left front tire/wheel assembly
also snagged on this post, causing the post to detach from the beam. The
next three posts also detached from the W-beam and pulled from the ground
during impact. The vehicle continued without redirection until pocketing
occurred at the fourth post contacted, causing the beam to separate at the
next downstream post location. The beam had deflected 3.3 ft (1.0 m)
before separation occurred. The downstream section of the separated rail
impaled the vehicle in the grille area and into the engine compartment; no
passenger compartment intrusion was noted. The vehicle stopped at the
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sixth post contacted. Damage to the vehicle and barrier is shown in figure

24.

Test BH-4. The purpose of this test was to evaluate the Gi(13)
guardrail system for underride with the beam mounted at 30 in (76 cm) high
as shown in figure 26. Test conditions included a 4699-1b (2137-kg)
vehicle with a 20-in (51-cm) underride height impacting at 60.3 mph
(7.1 km/h) and angle of 24.4°. As shown in figure 27, the vehicle
remained in contact with the barrier for 25 ft (7.6 m) before redirection
at a 17.3-degree angle. No significant snagging of the rail or line posts
was noted. Damage after the test is shown in figure 26.

Test BH-S. The purpose of this test was to evaluate the GU4(1S)
guardrail system for override with the beam mounted at 22 in (56 cm) above
grade as shown in figure 28. Unlike Test BH-2 which included the use of
rectangular washers under the beam/post attachment bolt head, this system
used no washers and was considered "uncdupled." Test conditions included a
L762-1b (2160-kg) vehicle with a 20 in (51 em) override dimension impacting
at 61.2 mph (98.5 km/h) and at a 26.5-degree angle. As shown in figure 29,
the vehicle bumper immediately rode up over the W-beam whichﬁresulted in
the vehicle ramping over the barrier after 18 ft (5.5 m) of contact.

Photographs after the test are shown in figure 28.

Test BH-6. The purpose of this test was to determine if the 32-in
(81.3~cm) high GY4(1S) system was also a critical underride height for the
1800-1b (800-kg) car at 60 mph (95 km/h) and 25-degree angle. Since the
1800-1b (800-kg) test car had the same 20-in (51-cm) underride height as
the 4500-1b (2000-kg) sedan used in previous tests, the test would
determine if a2 higher height could be tolerated for the smaller car.

Figure 30 contains photographs before the test. The 1835-1b (832-kg)
vehicle impacted at 61.4 mph (98.8 im/h) and an angle of 25°. &s shown in
figure 31, the vehicle was redirected by the barrier until significant
wheel snagging on the posts caused the vehicle to yaw and spin ocut from the

barrier, Photographs after test are shown in figure 30.
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Four. -2sts were conducted con the slopirg terrain geometry described in
figure 32. A great amount of difficulty was reallzed in the conduct of
rhese tes:ts. For the Tlrst thres tests, the guidance cable used to s:teer

-2 feqeaAd 3= -
LITTMITATSL At T2

P

i5-degree approacn to tne darr.2r, Inhe ta2st vehieles would travel alros:
100 ft on the sloping cerrain Wwitncut steering control., Ancther factor i3
the somewhal unpredictable stcering Iinput lmparted to the vehicle when :he

il

steering bracket 13 sheared off. For lsvel terralin tests, the "tfreak-off

ry

point is gererally less than a car length which enhances the precision o
the impact angle. The combination of bracket break-off steering irput zand
traversa. of slopinrg terrain for approximately 'C0 ft caused the first

thrae test conditisns o vary widely.

For =he fourth test, the steering cable termination point was moved up
to the c¢crest of the superelevated slope; thus for a constant 15-degree
angle, the fraewhe2iing vehlicle would traverse only 41.5 ft (12.7 m) tefasrs
impacting the barrier. Steering inputs were incorporated into the HVOSM
simulations in zn attsmpt to reconcile the difference between actual impact
conditions and those predicted in the simulations. Due to the combination
of steering input and sloping terrain traversal, it was difficult to reach

¢losure on this problem.

For reasons previously described in chapter Il and this section,
testing on the sloping terrain using the cable guidance system presented
many problems. Remote steering was contemplated, but this method has its
own sources of possible error also. [t was decided that the problems wers
real and solutions beyond the scope of the project. The four tests are

briefly described.
Test 3H-7. This test evaluated the GU(1S) guardrail when installed act
the hinge point (see figures 32 and 33). The top of rail was set at 32 in

(81 cm) for <he 20-in (57~cm) hign underride height of the 1950-1b (884-kgz!
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Honda. The vehicle impacted the barrisr at 3.3 mph (94 km/h) and 15 .¢-
degree angle. Immediately on impact, the vehicle bumper rode under the
rail and subsequently contacted two posts before redirection as shown in
figure 34. No wheel or bumper snagging occurred. Photographs before ard

after the test are sheown in figure 35.

Test BH-8. The purpose of this underride test was to evaluate the
same installation as BH-7 for a 4500-15 (2000-kg) vehicle impacting at
60 mph (95 lm/h) and 15°. Cue to the trajectory of the vehicle after
oreaking away from the guide cable the actual impact conditions wers
59.5 mph (95.8 km/h) and 19.5-degree impact angle. The higher than planred
impact angle could not be explained after much investigation. As shown in
figure 36, the vehicle remained in contact with the barrier for 28.3 ft
(8.8 m) before smooth redirection at a 4.2-degree exit angle. The front
bumper did not underride the beam and although tire contact with posts was
noted, no snagging occurred. Figure 37 contains photographs before and
after the test,.

Test BH-9. This test was considered a repeat of the previous test.
In this test, the vehicle drifted away from the barrier as had been antici-
pated in previous tests and had occurred with the 1800-1b (800-kg) car in
Test BH-7. However, based on a drift toward the barrier in the 4500-1b
(2000-kg) car test (BH-8), the cable termination had been set expecting
this same phenomenon, Instead, the vehicle drifted away from the barrier
and actual impact angle was 12.5° as shown in figure 38. The vehicle
impacted at 58.4 mpn (85.7 fps), the bumper underrode the beam, and
wheel/post contact occurred, but no snagging was noted. The lack of
snagging was attributed to the small deflection of the barrier system.
Photographs before and after the test are shown in figure 39.

Test BH-10. The guide cable *termination point was moved up the 10:!
slope for this repeat of the previous test. The actual impact angle of
13.6° was still below the 15-degree angle. A4s shown in figure 40, the

vehicle impacted at 58 mph (93 km/h) and remained in contact with the
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Figure 35. Befare and arter :est photograrns,
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Tigure 36. Sequential photograpns, [est 3H-3.






Figure 38. Sequs3ntial chcotograshs, Test 3H-3.
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sarriar for 31.0 7t (9.4 m) before smooth redirection at an exit angie of
5.7° occurred. The front bumper did not underride the barrier and wheel/
sost contact was not sufficient to cause snagging. Fhotographs after the

test are shown in figure 41.
J. Critical Mounting Height Tests, Series 2

After the sloping terrain tests were dismissed due to test condition
difficulties, another series of tests was conducted to further determine
critical mounting heights. It had been observed on the sloping terrain
tests that vehicle bumper underride had occurred without severe consequen-
ces due to the relatively low deflection values for the 15-degree angle
impacts. Accordingly, this test series focused on impact angle as a
variable in the critical barrier height determination. The tests were

conducted on level terrain with angles of impact from 7 to 20°,

In addition, a low profile car was used to evaluate the G1 cable

guardrail system.

Test BH-11. The purpose of this test was to establish the GU(1S)
system critical mounting height for underride for 6Q-mph (95-km/h), 7.5-
degree angle impacts. The beam was mounted at 33 in (84 em) and critical
bumper height of 20 in (51 em)} as shown in figure 42. The 4715-1b
(2138-kg) vehicle impacted the barrier at 61.0 mph (98.2 km/h) and an angls
of 6.8°, As shown in figure 43, the vehicle was smoothly redireczed with
no bumger snagging although bumper underride occurred. Insignificant
contact of the rear tire with the traffic face of one post was the oniy
post/whneel contact noted. Photographs after the test are shown in
figure 42, '

Test BH-12. The purpose of this test was to evaluate the same barrier
installation as BH-' I[see figure 44) with an impact angle of 15°. The
4715-1b (2138-kg) v= :le impacted at 61.2 mph (98.5 km/h) and a 14.5-
degree angle. As s . .n in figure 45, the right front fender deformed
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Figure 44. Before and afiar t2st onetegrapns, Test 3H-12.






inward, allcwing che right front tire and wheel to ride under and oehind
the W-beam, Although the front bumper underrode the beam, snagging ‘our
posts, sufficient vehicle velocity was maintained for normal redirection,
The venicle remained in contact for 31.5 ft (9.6 m) tefore redirection at a
4,5-degree exit angie. Photographs after the test are shown in figure U4i.

Test 3H-13. The purpose of this test was to evaluate the G4(iS)
guardrail mounted z% 33 in (83.8 cm) nigh with an impact angle of 20° as
shown in figure 46, As shown in figure 47, the 4650-1b (2104-kg) vehicle
impacted the =arrier at 53.6 mph (595.Z km/h) and a 19.5-degree angle.
Immediately after impact the front bumper underrode the W-beam, allowing
the rizht front wheel to engage the next six posts. Although the vehicle
tegan to redirect, impact with the posts caused the rear of the vehicle to
begin to yaw away from the barrier. The vehicle continued this "spin out™
but impact with the barrier further downstream caused redirection of the
vehicle parallel to the barrier. The initial barrier contact length was
37 £% (11 m) with a maximum deflection of 3.5 ft (1.1 m). The secondary
impact was 84 ft (26 m) downstream of initial impact and continued §.5 f:t
(2.9 m) until the barrier ended. Photographs after test are shown in

figure Ub.

Test BH-14. The purpose of this test was to evaluate the G4(1S)
guardrail system with the top of the beam mounted at 18 in (0.5 m) as shown
in figure 48. The 4670-1b (2118-kg) vehicle impacted the barrier at
61,7 mph (39.3 km/h) and 7.6-degree angle as shown in figure 49, The front
bumper rode over the W-beam at impact and the right front tire engaged the
rail, causing redirection to occur. The vehicle remained in contact with
the barrier for 20.3 £t (6.2 m) before redirection at a 1.4-degree exit

angle occurred. Photographs after test are shown in figure 18.

Test BH-15. The purpose of this test was to establish critiecal
mounting height for the G4(13) system for an angle of impact of 15° at
60 mph (95 km/h). Photographs before test are shown in figure 50. The

beam was installed a:t 22 in (56 cm) above level grade. The L670-lb
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(2118-¢g) venicle lmpacted at 62.7 mph ('00.9 km/h) and a 13.6-cegree
angle. As shown in figure 51, the vehicle became airborne and reacked a
maximum roll angle of 66° before recontacting the ground on the left
side. Jehicle and barrier damage are shown in figure 49, '

Tast 3H-16. The purpose of this test was Lo examine the performarce
of a low front profile car with a cable guardrail system. The most
commenly specified cable guardrail in the country is the G1 cable guardrail
shown in the AASHTO Barrier Guide(g). This barrier had been extensively
tested during development(1o) and more recently tested by New York(") anA
Southwest Research Institute for NCHRB('2). The G1 cable system shoun :n
the Barrier Guide has “he top cable at 30 in (76 cm) above grade.

Recently, New York (see ref. 1) has contemplated changing the height o

27 in (59 cm). Tests conducted recently by New York and SwWRI have
indicated this is more desirable. A test conducted at SwRI resulted in 3
4300-1b (1950-kg) van redirecting after a 60-mph (95-km/h), 25-degree angle
impact.(11) Thus, it had been demonstrated that 27 in (69 cm) was
sufficiently nigh to redirect a higher c.g. vehicle,

The top cable was set at 27 in (69 cm) for the test as shown in
figure 52. The test vehicle was'Selected based on a survey described in
figure 6. The 1974 Datsun 2607 weighing 2740 lb (1243 kg) impacted the
barrier at 59.6 mph (35.8 xm/h) and angle of 24.8°. As shown in figure 33,
the top cable rode up over the hood but was contained by the A pillar and °
pillar without any passenger compartment intrusion. The twWo lower catles
remained captured by the deformed sheet metal aiong the left sice of the
car. Vehicle contact with subsequent posts caused the rear of the vehlic.s
to begin yawing away from the barrier, Elastic spring of the cables pusnai
the vehicle laterally away from the system. The venicle lost contact with
the barrier after 64 £t (20 m) and recontacted the barrier 7 posts deown-
stream from the initial contact. This second contact caused the vehicle 0
spin out and begin traveling Backward, coming to rest as shown in
figure 52.
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V. CONCLUSIONS AND DESIGN GUIDELINES
a. Findings

As a result of the full-scale crash tests and computer simulations
conducted in this study, some Iimportan:t findings were revealed that affect
the performance of barriers with varying railing heights. These findings

were as follows:

. Bumper heights were shown to be vary sensitive to the impact
conditions. Though the computer simulatiens indicated underride for the
nominal impact conditions, the small deviations in actual test impact
conditions affected not only the bumper heights but also the barrier
response. When the actual test conditions were duplicated with the simu-
lation, the change in barrier response (from under;ide to no underride)
followed. However, the persistent problem of discrepancies between bumper
heights of tests and sloping terrain simulations could not be resolved;
this is principally attributed to the trajectory of the car after
traversing two slopes from 40 to 100 ft (12 to 30 m) after release from the
guide cable. The simulation model accurately predicts bumper height if

known trajectories are input.

. Bumper heights alone are not sufficient to prediet underride.
Though the bumper did underride the railing in Test BH-9 (see chapter IV),
the barrier deflection was not sufficient For the bumper to snag the posts
and pocket the vehicle. In fact, the slope tests BH-7 through BH-10 showed
that underride was not likely to be a problem for impacts of less than 20°
Wwith reascnable barrier heights. This was validated with subsequent flat
and level tests,

. Within the range of standard impact conditions, small car under-
ride was not shown to be critical because of insufficient barrier
deflection to permit venicle contact with the posts. This is based on the

fact that for a given speed and angle, thé large car is more critical in
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soth cases because of the larger deformation of the barrier which is
crucial for both underride and override. The pumper heights are bpasically

the same..

’ The finding that barrier deflection, in addition to the rela:tive
railing/bumper heights, affected uncerride implied that it also alfsctzad
override. That is, the bumper might override the railing without suffi-
cient lean of the barrier to launch the vehicle. On considering the
continued vehicle wheel and undercarriage contact wWwith the rail, this was

not as likely as the firmer vehicle body contact in underride situations.

. Uncoupling the railing from the posts by eliminating the
restraining washers did not significantly affect the barrier response in

underride or override conditions.

. On slope tests BH-7 through BH-10, it was found to be practically
impossible to achieve accurate impact conditions because of left or right
vehicle drift after release from the guidance system, Thus, threshold
underride/override barrier heights were established from flat and level
tests. Table 15 shows the critical railing heights for the  common corru-
gated railing systems (W-beam or thrie beam). Thresholds for other railing

types were not established.

. Based on computer simulations, the effects of suspension
variations were not judged to be critical. Thus, the bumper trajectoriss
predicted by the computer should be accurate for a wide range of suspension

values.

. Based on computer simulations, the effects on steering/braking on
level terrain are not significant: however, steering can affect the trajec-
tory of vehicles traversing slopes and result in changes in the bumper
height at impact. The infinite number of possible steering input

variations did not permit consideration of this variable in the project.
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Table 15. Threshold railing heights.

Condition Angle of Impact (degrees)*
7.5 15 25

Underride 34 (+2)ux 34 (+2} 32 (+0)

Override 18 (-2) 22 k+2) 22 (+2)

All tests were with nominal 4500-lb vehicles at 60 mph.
Pickups were not included in this study. Smaller cars
are not included due to the third conclusion on page 102,

Numbers in parentheses show relative railing heights with
respect to the 20-inch underride/override heights of the
test vehicles. These numbers are to the bottom of the
railing for underride and to the top of the railing for
override.
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. The single test of the low profile car indicated satisfactory
performance with the G1 cable system mounted at 27 in (70 em) high. ZIecent
experience with a test by New York indicated totally unsatisfactory
performance with the G! system mounted at 30 in (75 cm). The test vehicls
{a mid-70 Piymouth Fury 2-door hardteop) suffered severe passerger compar:-

;
(19) In an NCH2?

ment damage due to cables ssvaring the A and C pillars.
project at SWRI, a 4300-1b (1950-kg) van was successfully redirected a:
60 mph and 25-degree angle with the top cable at 27 in (70 em). Thus, iz
would appear that the Gl cable system mounting height as shown in the

AASHTO Barrier Guide should be lowered to 27 in (70 cm),

- The 1977 AASHTO 3arrier Guide(%) sets top of railing height faor
W-beam systems GU(1S) and G4(1&2W) at 27 inches (68.6 ecm). For the G9
thrie beam system the top of rail height is set at 32 inches (81.3 cm).
Since the findings of this study were based on passenger cars, it would
seem that a heam mounting height as high as possible would achieve the most
favorable results in the field. Since -meost of the smaller cars are
represented by the Honda, the higher beam mounting height would make the
barriers more responsive to vehicles weighing more and with higher c.g.s
than the 4500-1b (2025-kg) vehiele. Thus, for the design bumper height of
18 in (45.7 em), an ideal mounting height would be 30 in (76.2 cm) for the
W-beam and 38 in (96.5 c¢m) for the thrie beam as illustrated in Figure 354.
Allowing for some factor of safety (for uneven terfain, braking, etc.}, the
W-beam mounting height of 27 in (68.6 e¢m) could remain a good choice, but
the thrie beam mounting height could be raised from 32 to 35 in {81.3 to
88.9 cm) using the same rationale. Using a similar rationale, a user
agency should seriously consider upgrading where an installation height is
below 20+3 or 23 in (58.4 cm). The selection of the 3 in (7.5 em} value is

somewhat arbitrary and not based on any real precision.

The difficulty in achieving desired test conditions for barriers
mounted on sleping terrain prevented closure on certain questions regarding
the effects of the vehicle attitude (i.e., pitch and trajectory direction)

before and during the impact events. Using conventional steering
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Figure 54. Barrier height considerations.
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techniques (i.e., guide cable), control of the location and angle of impac:
cannct be satisfactorily controlled for determining threshold values. Some
form of remote steering or fixed guidance channel might be more accurate
although the former could have its own set of problems. It is recommended
that if signilicant questions arise regarding the findings of this proiect
in this regard tnat improved steering techniques on sioping terrain ke

investigated and crash tests conducted accordingly.
B. Design Guidelines

The threshold underride/override railing heights as established by
full-scale tests are shown above in table 15. This information, along with
the HVOSM data supplied by the Texas Transportation Institute (TTI) (see
chapter II), was used to develop design guidelines., The manner in which

these guidelines were developed and explanation of their use follow.

As indicated in chapter II (table 2), the TTI study included 26
roadway/roadside geometric parameters, For each of these roadway/roadside
cross sections, HVOSM runs were conducted for two vehicle sizes {1800 lb
(800 kg) and 4500 1b (2000 kg)] and three impact angles (7.5, 15, and 25°)
all at a single speed of 60 mph (95 lm/h). This produced a total of 26 x 2
% 3 = 156 HVOSM runs. OQutput from each run included the bumper mid-height
as the vehicle traveled across the section, A computer program was first

prepared for graphical presentation of this output data.

The TTI data represented bumper mid-heights of 17.2 in (43.7 cm) for
the 1800-1b (800-kg) car and 17.5 in (44.5 cm) for the 4500-1b (2000-kg)
vehicle. The first modification was to add 0.8 in (2.0 cm) and 0.5 in
(1.3 cm), respectively, to reach the single underride/ override height of
18.0 in (45 cm) for the design vehicle (see figures 4 and 5 of
chapter II). Further modifications were to adjust the heights by the
relative distances for underride/override as shown in table 15 above.
Table 16 shows the 12 final adjustments of the TTI data for the bottom of

the railing for underride and the top of the railing for override.
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Table 16. Adjustments of TTI data for
underride/override.

Impact Angle (degrees)
Vehicle 7.5 15 25

Underride (adjustments to bottom of railing)

1800-~1b +2.8 +2.8 +0.8
4500-1b +2.5 +2.5 +0.5

Override (adjustments to top of railing)

1800-1b -1.2 +2.8 +2.8

4500-1b -1.5 +2.5 +2.5
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The 12 adjustments shown in table 16 wWere plotted on each of ths 25
roadway/roadside cross sections. Figure 35 shcws an example of the
resulting plots. By shading in the area from the lowermost underride curve
{bottom of railing) to the uppermost override curve (top of railing), the

required rangs of railing width along the roadside could He established.

The 26 roadway/roadside conditions are repeated in table 17. Numocers
in parentheses refer to the corresponding numbers of the figures that
follow.

Figure 56 illustrates how the curves of figures 57 through 82 can be
used. By preparing an overlay scale corresponding to the Z-axis and
placing it at the guardrail position of interest, the required width and
height of the railing can be determined. Note that if the band width
exceeds the 12-in {30-cm) width of the W-beam, either a 20-in (50-cm) wide
thrie beam or an added rub rail should be used. If the band width is less
than the railing width, tolerances in railing height can be established.
That is, the railing can be moved up or down as long as the railing width
covers the band. An agency could opt for a tolerance to account for bumper
height variations {for any reason) by reducing the effective band width of

the beams.

Note that these barrier limit curves are only for corrugated railings
(W-beam or thrie beam). Underride/override thresholds were not established
in the study for other types of railings. Also, the underride/override
heights shown were established from flat and level full-scale tests. The
limits might be changed somewhat by downward or upward trajectories of the
vehicles at the guardrail points of interest, These effects could not be
established because of the problems associated with the modified HVOSM code
in simulations and vehicle drift in full-scale slope tests. Howevef, with
the relatively small deflections that would be expected with the G4 or G9
guardrail systems for most impacts, these effects are not considered to be

significant,
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Table 17. Roadway/roadside geometric parameters.

ay +48 -20 -10

ag +20 +29 =20 +21 -0
+4 ) +4 +4 +4
(57)% (63) (69) (73) (79)
+6 +6 +6 +H +6
(53) (64) (70) (74) (80)

ag +3 +8 +8 +8 +8
(39) (65} (71) (75) (81)
+10 +10 +10 +10 +10
(60) (66) (72) (76) (82)
-8 -8 -8
(61) (67) (77)
-4 -4 -4
(62) (68) (78)

TRAVELWAY | SHOULDER] ~EMBANKME:

100'

4

JTJ
l‘ 12° T 1000 ]
Zy

Positive sloping downward to right.
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* Numbers in parentheses refer to corresponding figure numbers.
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Figure 56. Barrier height limit envelope (G4(1S) system, a_ = -10, a, =20, a_ = 4).
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FEDERALLY COORDINATED PROGRAM OF HIGHWAY
RESEARCH AND DEVELOPMENT (FCP)

The Offices of Research and Development
of the Federal Highway Administration are
responsible for a broad program of research
with resources including its own staff,
contract programs, and a Federal-Aid
program which is conducted by or through
the State highway departments and which also
finances the National Cooperative Highway
Research Program managed by the
Transportation Research Board. The
Federally Coordinated Program of Highway
Research and Development (FCP) is a care-
fully selected group of projects aimed at
urgent, national problems, which concen-
trates these resources on these problems to
obtain timely solutions. Virtually all of the
available funds and staff resources are a part
of the FCP, together with as much of the
Federal-aid research funds of the States and
the NCHRP resources as the States agree to
devote these projects.*

FCP Category Descriptions

1. Improved Highway Design and Operation
for Safety
Safety R&D addresses problems connected
with the responsibilities of the Federal
Highway Administration under the High-
way Safety Act and includes investigation
of appropriate design standards, roadside
hardware, signing, and physical and scien-
tific data for the formulation of improved
safety regulations.

2. Reduction of Traffic Congestion and Im-
proved Operational Efficiency
Traffic R&D is concerned with increasing
the operational efficiency of existing high-
ways by advancing technology, by improv-
ing designs for existing as well as new
facilities,. and by keeping the demand-ca-
pacity relationship in better balance
through traffic management techmiques
such as bus and carpool preferential treat-
ment, motorist information, and rerouting
of traffic.

*The complete 7-volume officisl samment of t PCP & aveiinbis from the
Nasionsl Techaical Information Service (NT1S), Springfieid, Virginia 2101
(Order No. PB 243057, prioe $43 postpuid). Single copiss of the introductory
volume are obtamable without charge from Progrum Asalysis (HRD-2),
Offices of Research and Development, Federsl Highway Adminisration,
Wahingion. D.C. 20590,

3. Environmental Considerations in Highway
Design, Location, Construction and
Operation
Environmental R&D is directed toward
identifying and evaluating Highway
elements which affect the quality of the
human environment. The ultimate goals
are reduction of adverse highway and traf-
fic impacts, and protection and enhance-
ment of the environment.

4. Improved Materials Utilization and
Durability
Materials R&D is concerned with expand-
ing the knowledge of materials properties
and technology to fully utilize available
naturaily occurring materials, to develop
extender or substitute materials for materi-
als in short supply, and to devise proce-
dures for converting industrial and other
wastes into useful highway products. These
activities are all directed toward the com-

" mon goals of lowering the cost of highway
construction and extending the period of
maintenance-free operation.

5. Improved Design to Reduce Costs, Extend
Life Expectancy, and Insure Structural
Safety
Structural R&D is concerned with further-
ing the latest technological advances in
structural designs, fabrication processes,
and construction techniques, to provide
safe, efficient highways at reasonable cost.

6. Prototype Development and Impiementa-
tion of Research
This category |s concerned with developing
and transfemng research and technoiogy
into practice, or, as it has been commonly
identified, ‘‘technology transfer.”

7. Improved Technology for Highway Main-
tenance
Maintenance R&D objectives include the
development and application of new tech-
nology to improve management, to aug-
ment the utilization of resources, and to
increase operational efficiency and safety
in the maintenance of highway facilities.



